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1  | INTRODUC TION

In Angiosperms, strong associations exist between mating systems 
and other life‐history traits, such as dispersal (Auld & Rubio de Casas, 
2012), allocation to male versus female functions (Brunet, 1992) or 
lifespan. Despite significant empirical work (Barrett & Harder, 1996; 
Munoz, Violle, & Cheptou, 2016; Scofield & Schultz, 2006), the lat‐
ter association has received limited attention from the theoretical 
standpoint. Indeed, while it has long been recognized that most self‐
fertilizing species are short‐lived and most predominant or obligate 
outcrossers are long‐lived (Barrett & Harder, 1996; Duminil, Hardy, & 
Petit, 2009; Munoz et al., 2016; Stebbins, 1950), relatively few the‐
oretical arguments have been advanced to explain this association.

One of the most prevalent arguments to explain the evolu‐
tion of self‐fertilization is reproductive assurance: contrary to an 

outcrosser, a selfer is able to reproduce in the absence of polli‐
nators or compatible mating partners, which grants it an advan‐
tage when pollination is inefficient (Eckert, Samis, & Dart, 2006). 
Stebbins (1950) proposed that this advantage may be weaker in 
perennials compared to annuals, since perennials get more than 
one try at reproducing, and therefore may be less impacted by 
poor pollination during a given mating season. Later, Lloyd (1992) 
suggested that self‐fertilization, because it ensures reproduction, 
could also cause the consumption of resources that could have 
been more advantageously allocated to post‐breeding survival 
or future outcrossed reproduction in perennials, yielding an ad‐
ditional cost to self‐fertilization is such species (between‐seasons 
seed discounting). Morgan, Schoen, and Bataillon (1997) investi‐
gated the validity of these arguments by developing a phenotypic 
model and concluded that the association between annuality and 
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the life cycle and discuss how extrinsic mortality conditions are expected to affect 
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short‐lived even in a very stable habitat, as a strategy to avoid the deleterious effects 
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selfing is more likely to be due to between‐seasons seed discount‐
ing, rather than reproductive assurance. They also showed the im‐
portance of the repeated effect of adult inbreeding depression for 
the maintenance of outcrossing in perennials. Empirical evidence 
also suggests that inbreeding depression is overall higher in pe‐
rennials than in annuals (Angeloni, Ouborg, & Leimu, 2011), which 
could constitute an additional barrier to the evolution of self‐fer‐
tilization in perennials.

These arguments focus on the consequences of perenniality 
for the evolution of self‐fertilization, considering lifespan as a fixed 
characteristic. Yet, lifespans evolve in nature (Stearns, 1992), and 
joint evolutionary shifts of lifespan and mating system have been 
documented. Indeed, the transition to self‐fertilization is often as‐
sociated with significant morphological changes, such as vegeta‐
tive size and flower size reduction (the selfing syndrome, Sicard & 
Lenhard, 2011), and lifespan shortening compared to outcrossing 
relatives (Ehrlen & Lehtila, 2002). For example, Arabidopsis thaliana 
is a highly selfing annual that recently differentiated from its self‐in‐
compatible and perennial relatives A. lyrata and A. halleri (Clauss & 
Mitchell‐Olds, 2006). Furthermore, studying pairs of sister species 
across 15 families, Grossenbacher, Briscoe Runquist, Goldberg, and 
Brandvain (2015) found numerous joint shifts towards selfing and 
annuality from outcrossing, perennial ancestors in genera such as 
Mimulus or Medicago and very few shifts to longer lifespans in as‐
sociation with selfing. In fact, the only such shifts they found were 
observed in the Oenothera genus, where segregation and recombi‐
nation are suppressed when reproducing by self‐fertilization, which 
implies that selfing individuals are effectively reproducing clonally 
(Johnson, Smith, & Rausher, 2009).

These examples show that joint shifts of mating system and 
lifespan almost always occur in the same direction, from out‐
crossing more long‐lived ancestors towards self‐fertilizing derived 
species with a shorter lifespan. In such situations, lifespan short‐
ening could have allowed for the evolution of self‐fertilization. 
Alternatively, the transition to self‐fertilization could have induced 
evolution towards a shorter lifespan. This possibility has seldom 
been investigated. Indeed, classical studies of the evolution of 
lifespan predict that it should be fine‐tuned to best fit the extrin‐
sic mortality conditions experienced by the considered population, 
through optimal allocation of resources to reproduction, growth 
or survival (e.g. Cichoń, 1997; Schaffer, 1974) and senescence (e.g. 
Silvertown, Franco, & Perez‐Ishiwara, 2001), but rarely consider 
the evolution of lifespan in interaction with other traits. From a 
theoretical standpoint, the only study that, to our knowledge, has 
investigated the influence of the mating system on lifespan evolu‐
tion is that of Zhang (2000), who developed a phenotypic model 
for the joint evolution of reproductive effort and sex allocation in 
partially self‐fertilizing hermaphrodites. Assuming a survival ver‐
sus reproduction trade‐off (Stearns, 1992), they reached the con‐
clusion that reproductive effort increases (and lifespan decreases) 
when the selfing rate increases through greater allocation to the fe‐
male function, provided that inbreeding depression is weak (𝛿 < 1

2
),  

female reproduction is very costly, and juvenile survivorship is 
constrained within a narrow range of values. Importantly how‐
ever, Zhang (2000) assumed inbreeding depression to only affect 
the survival of juveniles to maturity, although inbreeding depres‐
sion typically occurs over all stages of the life cycle (Husband & 
Schemske, 1996).

In summary, on the one hand, the influence of lifespan on the 
evolution of the mating system has been studied, considering lifes‐
pan as a fixed characteristic (Morgan et al., 1997). On the other hand, 
the potential influence of the mating system on the evolution of 
lifespan has only been scarcely investigated, assuming no inbreeding 
depression occurred in adults (Zhang, 2000). Finally, the question 
of the joint evolution of lifespan and mating system has never been 
tackled.

In this paper, we build modifier models (Kirkpatrick, Johnson, 
& Barton, 2002) to investigate the joint evolution of lifespan and 
selfing in a population with overlapping generations, including in‐
breeding depression affecting various steps in individuals' life cycle 
as fixed parameters. Following previous authors, we model the 
evolution of lifespan through that of reproductive effort, assum‐
ing a survival versus reproduction trade‐off for which we consider 
various shapes (i.e. convex, linear or concave Stearns, 1992). We 
incorporate extrinsic mortality as a constant parameter (Schaffer, 
1974; Zhang, 2000). We first study the evolution of each trait 
separately, taking the other as fixed, and incorporate inbreeding 
depression affecting juvenile and adult survival. In each case, we 
obtain accurate analytical approximations for the evolutionary sta‐
ble strategies. We show that self‐fertilization is expected to favour 
evolution towards shorter lifespans when inbreeding depression 
affects adult survival. Conversely, we show that the range of in‐
breeding depression under which selfing can evolve rapidly shrinks 
as lifespan increases, in agreement with previous work (Morgan et 
al., 1997). Then, using individual‐centred simulations along with our 
previous analytical approximations, we study the joint evolution of 
lifespan and selfing. We study the effects of inbreeding depression 
affecting various steps in the life cycle and discuss how extrinsic 
mortality conditions are expected to affect evolutionary associ‐
ations. In particular, we show that selfers may sometimes remain 
short‐lived even in a very stable habitat, as a strategy to avoid the 
deleterious effects of inbreeding.

2  | METHODS

2.1 | Outline of the model

2.1.1 | Life cycle and demographic assumptions

We consider a very large population made of partially selfing her‐
maphrodites, which are assumed to be diploid. We assume the popu‐
lation stays at carrying capacity. This implies that juveniles may only 
settle in replacement of recently deceased adults (Figure 1). Once 
settled, juveniles reach maturity before the next mating event.
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We assume that adults keep the same fecundity and survival 
probability throughout their lives (i.e. no age‐specific effects). 
Established individuals allocate a fraction e of their resources to 
reproduction and the remaining fraction 1  −  e to post‐breeding 
survival. Consequently, sexually mature individuals have a certain 
probability of survival between mating events (say, flowering sea‐
sons) and generations may overlap: the more resources an individual 
allocates to reproduction, the larger its reproductive output, but the 
lower its chances of survival until the next mating event. During each 
mating event, individuals reproduce by self‐fertilization in a propor‐
tion α and by random mating otherwise. Selfed offspring suffer from 
inbreeding depression (Charlesworth & Charlesworth, 1987) differ‐
ently depending on the considered stage. As juveniles, they suffer 
from juvenile inbreeding depression, denoted δj, which decreases 
their probability of survival to maturity. If they reach maturity, they 
suffer from adult inbreeding depression, denoted δa, which de‐
creases their survival probability between mating events. Denoting 
o(e) the survival probability between two mating events of an out‐
crossed individual as a function of its reproductive effort, that of 
a selfed individual, s(e), is therefore given by s(e)=o(e)× (1−�a).  
In simulations, we also considered the case where selfed adults 
suffer from inbreeding depression on fecundity, which diminishes 
selfed individuals' contribution to the gamete pool by a proportion 
δf (Appendix 5).

Whether lifetime inbreeding depression, that is the decrease 
in lifetime fitness of selfed individuals relative to the outcrossed, 
varies with life expectancy depends on the life stages we assume 

inbreeding depression to affect. When inbreeding depression affects 
juvenile survival or fecundity, lifetime inbreeding depression is unaf‐
fected by life expectancy. On the contrary, when inbreeding depres‐
sion affects adult survival, lifetime inbreeding depression increases 
with life expectancy (Appendix 1). Indeed, in the latter case, selfed 
individuals have less opportunities to reproduce, while in the former, 
selfed individuals have the same life expectancy as the outcrossed.

2.1.2 | Genetic assumptions

We assume that individuals' selfing rate and reproductive effort are 
each entirely determined by a single biallelic modifier locus. In each 
case, we consider the population to be initially fixed with one allele 
(the resident) and introduce a rare mutant allele which has a small 
effect on its bearer's phenotype; that is, we assume weak selection. 
We then follow the change in frequency of this mutant when it is 
rare, and look for situations where no mutant can increase in fre‐
quency, that is evolutionarily stable strategies (ESS, Maynard Smith 
& Price, 1973).

2.2 | Analytical methods

For each model, we obtained analytical predictions for the evolution‐
ary stable strategies, using the theoretical framework introduced by 
Barton and Turelli (1991) and generalized by Kirkpatrick et al. (2002). 
Only a summary of the results is given in the main text, and detailed 
recursions can be found in Appendixes 1, 2 and 3.

F I G U R E  1   Schematic representation of the life cycle and demography assumed in the model. Established individuals allocate a fraction e 
of their resources to reproduction, and the remaining 1 − e to survival. Juveniles replace deceased adults. Red dots depict deceased adults, 
and blue dots depict juveniles
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2.3 | Numerical analyses and simulations methods

All programs used in the present study are available on GitHub  
(https​://github.com/Thomas-Lesaf​fre/M2_project).

2.3.1 | Numerical analyses

The analytical results with approximations we obtain when studying 
the evolution of reproductive effort and selfing separately are com‐
pared with that of exact numerical analyses. For each model, the exact 
recursions, that is tracking genotypic frequencies (rather than allelic 
frequencies and genetic associations) with no approximations, are 
run for 106 generations. A rare mutant with a small effect (pm = 10−4, 
ϵ = 0.01) is introduced at t = 0, and the resulting frequency of the 
mutant is compared to its initial one. When the mutant increases in 
frequency, the mutant allele is taken as resident, and recursions are 
run again introducing a new mutant, until mutants no longer increase 
in frequency or the analysis hits a bound (i.e. 0 or 1). As these analyses 
were only conducted for validation purpose, outputs are presented in 
Appendix 4. Our results showed that the approximations we obtain 
are very close to the numerically obtained ESS, when considering the 
evolution of reproductive effort and selfing separately.

2.3.2 | Individual‐centred simulations

To study the joint evolution of lifespan and selfing, we performed indi‐
vidual‐centred C++ simulations, incorporating inbreeding depression 
affecting juvenile (δj) and adult survival (δa). In Appendix 5, we also 
consider the influence of inbreeding depression affecting fecundity 
(δf). In simulations, individuals follow the same life cycle as described 
above (Figure 1), and their selfing rate and reproductive effort are 
each determined by one modifier locus, which are allowed to mutate 
in both directions, following a uniform distribution in [α0 − d, α0 + d] 
and [e0 − d, e0 + d], where α0 and e0 are the parent's selfing rate and 
reproductive effort, respectively, with d = 10–1 and a mutation rate 
Um = 10–2. Free recombination (r= 1

2
) is assumed between the two loci.

3  | RESULTS

Throughout the following sections, we will need to track the pro‐
portion of selfed individuals in the population (Θ), which stays 
close to its equilibrium value in the absence of mutants (Θ∗) when 
mutants at modifier loci are rare and only weakly deviate from the 
resident strategy. As shown in Appendix 1, this equilibrium value 
is given by.

Equation (1) is a decreasing function of o(e); that is, s 
selfed individuals in the population is decreased by overlapping 

generations. We show in Appendix 1 that this is due to the re‐
peated effect of adult inbreeding depression on post‐breeding 
survival.

3.1 | Evolution of lifespan in a partially 
selfing population

In this section, we analyse a model for the evolution of lifespan 
under partial selfing through the evolution of reproductive effort, 
considering the selfing rate α as a parameter and assuming inbreed‐
ing depression affects juvenile and adult survival. We assume that 
the reproductive effort of a given individual is entirely determined 
by its genotype at a single biallelic modifier locus. Alleles M and m, 
which we assume to be codominant, code for a reproductive ef‐
fort e = e0 and e = e0 + ϵ (ϵ « 1), respectively. Furthermore, following 
Zhang (2000), we assume that the survival probability between two 
mating events of an outcrossed individual as a function of its repro‐
ductive effort e is given by.

where s is the maximal survival probability, that is a measure of ex‐
trinsic mortality, and x controls the shape of the survival versus re‐
production trade‐off. We use this function form because it is flexible 
and allows for the consideration of a variety of trade‐off shapes. The 
detailed recursions are given in Appendix 2. In brief, we follow the 
variation of three variables, namely the frequency of allele m (pm), 
which is assumed to be a very rare mutant with a small effect (ϵ « 1), 
the deviation in homozygosity at the modifier locus as compared to 
the panmictic expectation (Dm,m) and the proportion of selfed indi‐
viduals in the population (Θ), which is assumed to remain close to 
its equilibrium value Θ∗. We look for evolutionarily stable strategies 
(ESS, Maynard Smith & Price, 1973), that is situations where no mu‐
tant allele m may invade the population and replace the resident al‐
lele M.

3.1.1 | Allelic frequencies change

To leading order in ϵ, we can express the change in frequency of al‐
lele m between two timesteps (∆pm) as.

with V=1−
(
1−Θ�a

) (
1+

(
x−1

)
ex
0

)
. Using a separation of times‐

cales approximation (Kirkpatrick et al., 2002), that is assuming the 
deviation in homozygosity at the modifier rapidly equilibrates in 
comparison with allelic frequencies, we obtain a quasi‐equilibrium 
value by solving ∆Dm,m = 0 for Dm,m (where ∆D{m,m} is the change in 
excess in homozygotes at the modifier between two timesteps). 
Since Dm,m≥0 provided that ϵ « 1, the first term in Equation (3) is al‐
ways of the sign of ϵ, and only V matters for the determination of the 
equilibrium.

(1)Θ∗ =
�
(
1−�j

) (
1−o(e)

)

�
(
1−�j

) (
1−o(e)

)
+
(
1−�

)
�ao(e)

.

(2)o(e)=
(
1−ex

)
,

(3)Δpm=
�

2e0

(
pm

(
1−pm

)
+Dm,m

)
V+o(�2),
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3.1.2 | Evolutionarily stable strategy

In order to determine the equilibrium reproductive effort e*, we plug 
Equation (1) into V, and solve V = 0 for e0, which yields.

with = (1−)(2−x)(1−��j)−�a
[
(1−(2−x))(1−��j)−x�(1−�j)

]
.

For this equilibrium to be stable, that is for Equation (4) to be an 
ESS, it is required that.

One can see that when the survival versus reproduction trade‐
off is convex or linear (x≤1), condition (5) is not fulfilled, which im‐
plies that Δpm≥0. Thus, alleles increasing their bearer's reproductive 
effort are always favoured, and only annuality (e* = 1) can evolve. On 
the other hand, when the trade‐off is concave (x> 1), 𝜕V

𝜕e
<0, Equation 

(4) is an ESS and perennial strategies can be maintained. This result 
is classical and has bsseen reached by numerous authors before (e.g. 
Bell, 1980; Schaffer, 1974; Zhang, 2000). In addition, Equation (4) 
is a decreasing function of . That is, higher extrinsic mortality fa‐
vours higher reproductive efforts: allocating resources to survival 
becomes less and less advantageous as extrinsic mortality increases 
(i.e. as  decreases), because individuals are more likely to die in‐
dependently of the resources they spend on survival. Hence, our 
model also predicts the classical observation that annuals are more 
likely to evolve in more disturbed habitats, where extrinsic mortality 
is higher.

Assuming x  >  1, that is a concave trade‐off, differentiating 
Equation (4) with respect to α yields.

Equation (6) shows that the ESS reproductive effort is an in‐
creasing function of the selfing rate α, as long as some selfed 
juveniles survive to maturity (�j≠1), and adults suffer from in‐
breeding depression (�a≠0). In other words, through its impact on 
adult survival, self‐fertilization favours evolution towards higher 
reproductive efforts, and hence shorter lifespans. This effect be‐
comes stronger as adult inbreeding depression increases, because 
allocating resources to survival becomes less beneficial in selfed 
adults, and as juvenile inbreeding depression decreases, because 
it reduces the proportion of selfed individuals entering the adult 
population. Therefore, we show that self‐fertilization favours evo‐
lution of shorter lifespans.

3.2 | Influence of lifespan on the evolution of self‐
fertilization

In this section, we study the influence of lifespan on the evolution 
of self‐fertilization assuming inbreeding depression only affects ju‐
venile and adult survival, taking reproductive effort, that is lifespan, 
as a fixed parameter. We assume that the selfing rate of a given par‐
ent is entirely determined by a single biallelic locus. Alleles M and m, 
which are assumed to be codominant, code for selfing rates α0 and 
α0 + a, respectively. Allele m is assumed to be a rare mutant with a 
weak effect (a≪1). In this section, we do not need to make any as‐
sumption regarding the shape of the survival versus reproduction 
trade‐off. Hence, the general o(e) notation will be used. Recursions 
are given in Appendix 3. As in the previous section, we follow three 
variables: the frequency of the mutant allele (pm), the deviation in 
homozygosity at the modifier locus as compared to the panmictic 
expectation (Dm,m) and the proportion of selfed individuals in the 
population (Θ), which is assumed to remain close to its equilibrium 
value (Θ∗, Equation (1) when the mutant is rare. We look for the con‐
ditions under which allele m invades the population.

3.2.1 | Allelic frequencies change

Plugging Equation (1) into the allelic frequencies change (∆pm) yields, 
to leading order a,

with T=
[
1−o(e)

(
1+�a

)] [
o(e)�a−

(
1−o(e)

) (
1−2�j

)]
.

Using the same arguments as in the previous section, we show in 
Appendix 3 that for all α, Dm,m> 0. Hence, the first term in Equation 
(7) is always negative, and only T matters for the determination of 
the equilibrium. Since T does not depend on the selfing rate, there 
are only two possible situations: either T>  0 and full outcrossing 
(α = 0) is favoured, or T < 0 and full selfing evolves (α = 1), similar 
to the findings of previous authors (e.g. Lande & Schemske, 1985). 
Solving T < 0 for δj, we have.

which simplifies to 𝛿j<
1

2
 in the annual case (o(e)=0). Otherwise, 

this threshold is a decreasing function of o(e) when δa> 0. Hence, 
we find that the range of conditions under which self‐fertilization 
can evolve in a population decreases when lifespan increases, 
provided that inbreeding depression affects adult survival, in 
agreement with previous results (Morgan et al., 1997). This result 
implies that even very weak adult inbreeding depression is suffi‐
cient to prevent evolution of self‐fertilization in long‐lived species. 
Equation (8) was validated using numerical analyses, which were 

(4)e∗ =

⎡
⎢⎢⎢⎣

+

�
(−)2+4(1−)(x−1)(1−�a)[1−(1−�a)](1−��j)

2

2(x−1)(1−�a)(1−��j)

⎤
⎥⎥⎥⎦

1

x

,

(5)𝜕V

𝜕e
=x(1−x)ex−1S(1−Θ𝛿a)<0.

(6)

�e∗

��
=

�a
(
1−�j

)
e∗

(
1−��j

)√
(−)2+4(1−P)(x−1)(1−�a)[1−(1−�a)](1−��j)

2

≥0.

(7)Δpm=−
a
(
1−�0�j

)
Dm,m

(
1−o(e)

)

2
[
o(e)

(
1−�0

)
�a+

(
1−o(e)

) (
1−�0�j

)]2 ×T+o
(
a2
)

(8)T<0⇔𝛿j<
1−o(e)

(
1+𝛿a

)

2
(
1−o(e)

) ,
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found to be in very good agreement with the analytical prediction 
(Appendix 4).

3.3 | Joint evolution of lifespan and self‐fertilization

In this final section, we study the joint evolution of lifespan and 
selfing. Figure 2 highlights the different situations that arise when 
considering the joint evolution of lifespan and selfing. The thresh‐
old reproductive effort above which selfing can evolve (e) can be 
obtained by setting o(e)=S

(
1−ex

)
 in Equation (8), and solving T < 0 

for e. It is given by.

Overall, the transition to selfing is always associated with in‐
creased reproductive effort, that is reduced lifespan. Depending on 
the inbreeding depression and extrinsic mortality conditions, one of 
three things can happen: (1) selfing is always favoured (Figure 2a), 
and reproductive effort evolves to.

(2) outcrossing is always maintained (Figure 2c), and reproductive 
effort stabilizes at.

(3) either of the two stable equilibria (α = 0 and α = 1) can be reached, 
depending on initial conditions (Figure 2b). This occurs when adult 
inbreeding depression is high enough, provided that 𝛿j<

1

2
 (Figure 3). 

Selfers then stabilize at a high reproductive effort, which allows 
them to escape the deleterious effects of adult inbreeding de‐
pression. In other words, in situations where extrinsic mortality 

conditions would allow for the evolution of longer lifespans, selfers 
could remain short‐lived solely owing to the deleterious effects of 
inbreeding.

Figure 3 summarizes the evolutionary stable outcomes of the 
joint evolution of lifespan and selfing in various inbreeding depres‐
sion and extrinsic mortality conditions. Simulation results are in good 
agreement with analytical predictions, although small deviations are 
observed in Figures 2 and 3 for high and low selfing rates and re‐
productive efforts. These deviations are a consequence of the value 
constraints applied to the traits to keep them within bounds. Indeed, 
as the trait value (i.e. selfing rate or reproductive effort) approaches 
a bound of its definition domain (i.e. 0 or 1 on the [0,1] interval), it 
will tend to mutate slightly away from it, as all mutations exceeding 
the bound will be cut back to the bound value (e.g. a mutation at the 
reproductive effort modifier coding for a reproductive effort e> 1 
will be cut to e = 1)

In Appendix 5, we also consider the effect of inbreeding depres‐
sion affecting fecundity (δf). We show that δf or δj have the same ef‐
fect: they reduce the range of conditions under which the full selfing 
strategy can evolve. The mechanisms underlying these similar be‐
haviours are, however, slightly different. Indeed, whereas both cases 
they are caused by a reduction of the participation of selfed individ‐
uals to reproduction, δj decreases the proportion of selfed individu‐
als in the population. On the other hand, δf reduces the contribution 
of selfed adults to reproduction by reducing their contribution to 
the gamete pool.

4  | DISCUSSION

We built modifier models to investigate the joint evolution of lifes‐
pan and mating system. To the best of our knowledge, this is the first 
time modifier models are used to study the evolution of life‐history 
traits in a population with overlapping generations.

Although mixed mating is common in flowering plants 
(Munoz et al., 2016), we found only two stable mating systems: 

(9)e=

(
(1+�a)+2�j(1−)−1

(1+�a−2�j)

) 1

x

.

(10)e∗
self

=

(
1−(1−�a)

(1−�a)(x−1)

) 1

x

,

(11)e∗
out

=

(
1−

(x−1)

) 1

x

,

F I G U R E  2   Phase diagrams highlighting the three kinds of behaviour that can arise from the coevolutionary dynamics of lifespan and 
selfing. Reproductive effort (e) is plotted against selfing rate (α). Solid lines depict isoclines, and arrows indicate how the joint evolution 
behaves. Points depict simulation results and are coloured with respect to time
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full outcrossing or full selfing, similar to previous authors (e.g. 
Charlesworth, Morgan, & Charlesworth, 1990; Lande & Schemske, 
1985). This discrepancy between theoretical predictions and em‐
pirical observations has given rise to multiple theoretical inves‐
tigations. All of which proposed complications of earlier models 
which allow mixed mating to be maintained as an evolutionarily 
stable strategy (Goodwillie, Kalisz, & Eckert, 2005; Barrett & 
Harder, 2017}, but go beyond the scope of the present paper. The 

role of lifespan in the maintenance of mixed mating may, however, 
represent a track worth following.

In agreement with Morgan et al. (1997), we found that increasing 
lifespan considerably reduces the range of conditions under which 
self‐fertilization can evolve when inbreeding depression affects 
adult survival. This effect is due to the fact that life expectancy 
(and therefore lifetime reproductive success, that is fitness in our 
model) scales exponentially with survival probability. Indeed, when 

F I G U R E  3   Joint evolutionary equilibria. All results presented here assume x = 2. Y‐axis is the ESS reproductive effort (e*), and X‐axis 
is extrinsic mortality (). The lines correspond to analytical results, whereas dots depict simulations results. The red ones corresponds to 
the equilibrium reproductive effort when α = 1 is reached, whereas the blue line corresponds to the equilibrium reproductive effort when 
α = 0 is reached. The dashed black line represents the threshold lifetime inbreeding depression under which outcrossing can be maintained
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survival probability in the population is higher, its reduction among 
selfed individuals due to inbreeding depression is more consequen‐
tial for fitness than it is in more short‐lived species, which leads to 
higher lifetime inbreeding depression and therefore greater selec‐
tion against selfing. Furthermore, we found inbreeding depression 
on juvenile survival and fecundity (Appendix 5) to affect the coevo‐
lutionary dynamics similarly, as they both reduced the range of con‐
ditions under which the full selfing strategy can be reached. This is 
because decreasing the contribution of selfed parents to the pro‐
duction of offspring by reducing the amount of gametes they pro‐
duce (fecundity) or diminishing their frequency among the parents 
(juvenile survival) is equivalent in our model. Conversely, we showed 
that self‐fertilization is expected to cause evolution towards shorter 
lifespans due to inbreeding depression affecting adult survival, even 
under the low inbreeding depression conditions required for selfing 
to evolve in long‐lived species. In addition, we showed that self‐fer‐
tilizing species could remain short‐lived even in a very stable habitat, 
as a strategy to avoid the deleterious effects of inbreeding. Finally, 
we showed that long‐lived selfers can only emerge under very weak 
adult inbreeding depression and should be very rare. This is corrob‐
orated by the work of Munoz et al. (2016), who found that only 2\% 
of woody perennials are obligatory selfers.

The only previous study of the influence of the mating system 
on the evolution of lifespan is that of Zhang (2000). Whereas our 
main conclusions are in line with theirs, they also differ in a num‐
ber of ways. Zhang (2000). concluded that self‐fertilization could 
induce evolution of shorter lifespans through increased alloca‐
tion to female reproduction, without any role for adult inbreed‐
ing depression. Zhang (2000)’s results and ours are not mutually 
exclusive, since they rely on different mechanisms. However, we 
expect our prediction to apply more generally. Indeed, whereas 
our predictions only require inbreeding depression to affect adult 
survival, which seems reasonable, as inbreeding depression com‐
monly occurs over all stages of life (Husband & Schemske, 1996), 
Zhang (2000)’s prediction requires that female reproduction is 
sufficiently costly, that inbreeding depression remains low and 
that juvenile survivorship is constrained within a narrow range of 
values. Importantly, Zhang (2000)’s approach and ours also dif‐
fer widely in the methods used, as we assume that juveniles are 
produced in large excess with respect to the available resources, 
so that the population reaches its carrying capacity before each 
flowering seasons and the population size is kept constant, 
whereas Zhang (2000) modelled adult survival as an additive term 
(see Equation 3 in their study), which is only valid in the case of 
an exponentially growing population, where juvenile recruitment 
is not limited by resource availability (Kozłowski, 1993; Stearns, 
1992). Small founding populations, which cannot produce enough 
offspring to saturate their habitat over the course of one mating 
season, may exhibit such rapid growth. However, no population 
grows forever as resources sooner or later become limiting. Since 
nonannual species, and particularly long‐lived species such as 
trees, tend to inhabit more stable environments (Petit & Hampe, 
2006; Schaffer, 1974), we expect relatively stable populations 

to be more widespread than exponentially growing populations, 
which is a necessarily transient state, and therefore would also 
expect our approach to hold greater generality than that of Zhang 
(2000).

Overall, both theoretical and empirical results indicate that 
predominantly selfing species are almost always short‐lived, while 
predominantly outcrossing ones are mostly long‐lived, but the caus‐
ative mechanisms underlying this correlation still require theoreti‐
cal and empirical work to be unravelled. One role of models such 
as the present study is to provide putative ecological and genetic 
conditions under which a given association may emerge. Given these 
results, we propose that lifespan could act as a confounding factor 
when considering the joint evolution of self‐fertilization with other 
traits. For example, lifespan shortening following the transition to 
self‐fertilization could affect other traits, thereby contributing to the 
emergence of the selfing syndrome, rather than self‐fertilization per 
se alone. Indeed, as a shorter lifespan implies that individuals have to 
complete their life cycle more rapidly, they could grow smaller flow‐
ers regardless of an adaptation to more efficient selfing (Sicard & 
Lenhard, 2011). Accounting for lifespan could also shed new light on 
some long‐standing evolutionary questions related to the evolution 
of mating systems. For instance, lifespan could influence the joint 
evolution of dispersal and self‐fertilization in two ways. First, in‐
creased lifespan induces higher local relatedness (Duputié & Massol, 
2013), and perennials tend to occupy more saturated, competitive 
environments. Hence, kin competition should be greater in more 
long‐lived species, and long‐distance dispersal could be favoured 
as a mean to avoid it. Since perennials outcross more than annuals, 
this could generate an indirect association between long‐distance 
dispersal and outcrossing through lifespan. Second, the repeated 
effect of adult inbreeding depression considerably increases the 
detrimental effects of mating among relatives in perennials. Long‐
distance dispersal and outcrossing could thus be favoured jointly in 
such species as an inbreeding avoidance strategy (Auld & Rubio de 
Cases, 2012).

Throughout this work, we assumed fixed inbreeding depres‐
sion. Inbreeding depression is generally thought to be caused by 
recessive deleterious mutations segregating at low frequencies in 
populations (Charlesworth & Willis, 2009). The population genet‐
ics of such mutations in populations with overlapping generations 
are poorly understood theoretically. Evidence from large‐scale 
meta‐analyses suggest that the measured magnitude of inbreed‐
ing depression increases as species' lifespan increases (Angeloni 
et al., 2011; Duminil et al., 2009). However, it is unclear whether 
this pattern is due to mating system differences between long‐
lived and short‐lived species (Munoz et al., 2016), or to lifespan. 
Additionally, empirical studies of inbreeding depression in pe‐
rennials are rather scarce, and rarely span over several years, 
let alone individuals' entire lives (Husband & Schemske, 1996). 
Consequently, the quantities measured in such studies are not 
likely to depict inbreeding depression in its classic definition, that 
is the lifetime fitness decrease in selfed individuals as compared to 
outcrossed ones (Charlesworth & Charlesworth, 1987), but rather 
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its magnitude at a given timestep or stage. Therefore, estimates 
in short‐lived and long‐lived species may not be readily compara‐
ble, and higher inbreeding depression levels reported in perennials 
could in part reflect measurement biases (Angeloni et al., 2011). 
Lifespan may also interact with the mutation load in nontrivial 
ways. On the one hand, longer lifespan may increase selection 
against deleterious mutations, because of the increased number 
of opportunities for selection to occur, thereby leading to lower 
levels of inbreeding depression through better purging (Morgan, 
2001). On the other hand, more long‐lived species may endure 
significantly more mitotic mutations throughout their lives owing 
to their overall larger stature, which could result in an increase in 
inbreeding depression as plants do not have a separated germline 
(Scofield & Schultz, 2006). Furthermore, based on theoretical ar‐
guments (Abu Awad, Billiard, & Tran, 2016), it was proposed that 
perennials may experience reduced purging of mutations affecting 
juvenile fitness, as some of these mutations would remain as neu‐
tral mutations among adults, and be recurrently reintroduced in 
the population through reproduction.

Importantly, these various predictions stem from vastly differ‐
ent approaches, and remain mostly verbal. In particular, the rare 
models that considered populations with overlapping generations 
vary considerably in terms of the life stage they assume deleterious 
mutations to affect. Indeed, whereas some authors assume they 
only act on juvenile survival or gamete production (Abu Awad et 
al., 2016), others assume they affect their bearers' survival through‐
out their lives (Morgan, 2001). As for somatic mutations (Scofield 
& Schultz, 2006), although it is clear such mutations occur and 
can be inherited in large‐statured plants such as oaks (Quercus 
robur, Plomion et al., 2018), the population‐level consequences of 
this mechanism were never investigated theoretically. Besides, no 
study has yet considered the interaction between separate loads 
affecting different life stages, although these situations are likely 
to occur since differential purging has been reported between life 
stages (Angeloni et al., 2011). Finally, every theoretical study so far 
has assumed individuals' fecundities and survivorship to not depend 
upon their age, which is a strong simplifying assumption (Franco & 
Silvertown, 1996; Petit & Hampe, 2006). In the future, significant 
insight for the evolution of mating systems and life histories is to be 
gained through investigations of the dynamics of mutation loads in 
perennials.
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APPENDIX 1
Propor t ion of  se l fed ind iv idua ls  and l i fet ime inbreed‐
ing depress ion

In this section, we detail the derivation of the equilibrium propor‐
tion of selfed individuals in the population and show that its de‐
crease when longevity increases is attributable to stronger selection 
against inbred individuals.

Propor t ion of  se l fed ind iv idua ls
Following reproduction, adult individuals survive with probabil‐
ity o(e) if they were produced by outcrossing, and 

(
1−�a

)
o(e) if 

they were selfed. Therefore, denoting Θ the proportion of selfed 
individuals in the population at a given timestep, the proportion 
of adult individuals surviving between two mating events ( ) is 
given by

and the proportion of selfed individuals among them, Θs is

Among the juveniles settling in the population at a given mating 
event, the proportion of selfed individuals (Θj) given the selfing rate 
α can be expressed as

Hence, the proportion of selfed individuals at the next timestep 
(Θ�) is

and, solving ΔΘ=Θ�−Θ=0, we obtain the equilibrium proportion of 
selfed individuals in the population, Θ∗:

Lifet ime inbreeding depress ion

In our model, inbreeding depression only affects survival, in juve‐
niles and in adults. Thus, the decrease in fitness selfed individuals 
suffer from in comparison with the outcrossed throughout their 
lives, and not only between two mating events (i.e. lifetime inbreed‐
ing depression) can be expressed in terms of life expectancies. The 
life expectancies for selfed (s) and outcrossed (0) individuals, re‐
spectively, are given by

(A1) =0(e)[Θ(1−�a)+1−Θ],

(A2)Θs=
Θ
(
1−�a

)

Θ
(
1−�a

)
+1−Θ

(A3)Θj=
�(1−�j)

�(1−�j)+1−�
.

(A4)Θ� = Θs+

(
1−

)
Θj,

(A5)Θ∗ =
�
(
1−�j

) (
1−o(e)

)

o(e)
(
1−�

)
�a+

(
1−o(e)

) (
1−��j

) .

(A6)s=
1−�j

1−o(e)
(
1−�a

) and, o=
1

1−o(e)
,
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and lifetime inbreeding depression can be expsressed as

Equation (A7) is an increasing function of o(e); that is, selection 
against selfed individuals grows stronger as longevity increases. This 
is due to the repeated effect of adult inbreeding depression on post‐
bsssreeding survival. In the annual case (o(e)=0), Equation (A7) re‐
duces to �=�j. Interestingly, Equation (A7) relates to Θ∗ (Equation A5) 
in the following way:

Therefore, the equilibrium proportion of selfed individuals in the 
population decreases when generations overlap (i.e. o(e)) increases, 
due to stronger selection against selfed individuals owing to the 
repeated effect of adult inbreeding depression on adult survival. \
nolinenumbers

APPENDIX 2
Recur s ions for  the evo lut ion of  reproduc t ive ef for t  in 
a  par t ia l ly  se l f ing populat ion

In this section, we detail the mathematical derivations leading to 
the ESS reproductive effort expression we obtain. The selfing rate 
is fixed, and reproductive effort is controlled by a single modifier 
locus. To describe the changes happening in the population between 
two timesteps, we use the theoretical framework first described by 
Barton and Turelli (1991) and generalized by Kirkpatrick et al. (2002). 
We follow the variation of three variables, namely the frequency (pm) 
of the mutant allele, which is assumed to be a rare with a small effect 
(ε) on its bearer's reproductive effort, the excess in homozygosity at 
the modifier locus (Dm,m) and the proportion of selfed individuals in 
the population (Θ).

We define the indicator variables Xm and Ẋm, corresponding to the 
two allelic positions of the modifier locus located on the paternally 
and maternally inherited chromosomes, respectively. These vari‐
ables can take two values, 1 if the mutant allele (m) is present at the 
considered position, and 0 otherwise. Since there is no maternal or 
paternal effect on the expression of the alleles at the modifier, we 
have

Using these indicator variables, we may define the centred vari‐
ables �m and 𝜁̇m as

These variables allow us to define the excess in homozygotes in 
the population at the modifier as compared to the panmictic expec‐
tation (Dm,m) as

where 𝜁m,m= 𝜁m× 𝜁̇m.

Reproduc t ion

Using indicator variables, the reproductive effort of a given individ‐
ual, e, can be expressed as follows

The average reproductive effort is thus

which yields, to leading order in ϵ, the relative contribution of a given 
individual to reproduction (ẽ) during a given mating event

Frequenc y of  the mut ant
Using Equation (A14), the frequency of the mutant allele (pjm) among 
juveniles following reproduction is

with qm = 1 − pm, and the change in frequency of the mutant among 
juveniles is therefore

E xcess in homoz ygotes

The change in homozygosity at the modifier in juveniles can be di‐
vided into two phases, selection and syngamy. The excess in ho‐
mozygotes at the modifier following selection, Dj⋅

m,m
, is given by

where Xjm and Ẋjm are indicator variables defined among juveniles fol‐
lowing selection (so that �

[
X
j
m

]
=�

[
Ẋ
j
m

]
=p

j
m). Nothing that 

p
j
m=pm+Δjpm, and expressing Equation (A17) in terms ssof �‐varia‐

bles, we have

to leading order in ϵ and assuming pm is small. During syngamy, 
homozygosity is generated by inbreeding. In our model, we assumed 
partial selfing. Therefore, the excess in homozygotes among juve‐
niles, after accounting for juvenile inbreeding depression, is given by

(A7)�=1−
s

o

=1−

(
1−o(e)

) (
1−�j

)

1−o(e)
(
1−�a

) .

(A8)Θ∗ =

�
(
1−�

)

�
(
1−�

)
+1−�

.

(A9)�[Xm]=�[Ẋm]=pm .

(10)𝜁m=Xm−pm and, 𝜁̇m= Ẋm−pm so that�
[
𝜁m

]
=�

[
𝜁̇m

]
=0.

(A11)Dm,m=�[𝜁m,m]=�[Xm Ẋm]−p2
m
,

(A12)e=e0+
𝜀

2

(
Xm+ Ẋm

)
=e0+𝜀pm+

𝜀

2

(
𝜁m+ 𝜁̇m

)
.

(A13)e=�[e]= e0+�pm,

(A14)ẽ=
e

e
≈1+ 𝜀̂j

(
𝜁m+ 𝜁̇m

)
,with 𝜀̂j=

𝜀

2e0
.

(A15)

p
j
m=�

[
ẽ
Xm+ Ẋm

2

]
=
1

2
�
[
ẽ
(
𝜁m+ 𝜁̇m+2pm

)]
=pm+ 𝜀̂j(pmqm+Dm,m),

(A16)Δjpm= 𝜀̂j
(
pmqm+Dm,m

)
.

(A17)D
j⋅

m,m
=�

[(
X
j
m−p

j
m

) (
Ẋ
j
m−p

j
m

)]
,

(A18)

D
j⋅

m,m
=�

[
ẽ 𝜁m,m−Δjpm

(
ẽ 𝜁m

)
−Δjpm

(
ẽ 𝜁̇m

)
+
(
Δjpm

)2]
=�

[
ẽ 𝜁m,m

]
+
(
Δjpm

)2
≈Dm,m

(
1+2𝜀̂j

)

(A19)

D
j

m,m
=Θj

�

[
1

4
𝜁
j2

m +
1

2
𝜁
j

m,m
+
1

4
𝜁̇
j2

m

]
=
Θj

2
(D

j⋅

m,m
+p

j
mq

j
m)≈

Θj

2

(
Dm,m

(
1+3𝜀̂j

)
+pm

(
1+ 𝜀̂j

))
,
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where � jm=X
j
m−p

j
m (resp. 𝜁̇ jm= Ẋ

j
m−p

j
m) is the centred variable defined 

for the paternally (resp. maternally) inherited chromosome among 
juveniles following selection, that is taking the frequency of the 
mutant among juveniles following selection (pjm) as reference value 
(Kirkpatrick et al., 2002).

Sur v iva l

We denote by  the probability of survival osf a parent taken at ran‐
dom in the parental population. Using our indicator variables, and 
given the proportion Θ of selfed individuals in the population, the 
probability of survival is

Substituting indicator variables with �‐variables and assuming 
that ε and pm are small, we obtain, to leading order,

Thus, the mean survival probability is

and the relative survival probability (̃ ) simplifies to

Frequenc y of  the mut ant
Using Equation (A14), the frequency of the mutant (pjm) among the 
surviving parents is

and the variation in frequency of the mutant owing to selection 
among parents is therefore given bys

E xcess in homoz ygotes

Since only selection acts at this stage, the excess in homozygotes at 
the modifier locus among the parents (Ds

m,m
) is given by

Noting that ps
m
=pm+Δspm, and expanding Equation (A26), we 

have

Nex t t imes tep

From our previously derived expressions, the frequency of the mu‐
tant (p′

m
), the excess in homozygotes (D′

m,m
) and the proportion of 

selfed individuals in the population (Θ�) in the next timestep is

In order to determine the evolutionary stable strategy (ESS, 
Maynard Smith & Price, 1973) for the population given the pa‐
rameters of the model, one has to determine the value of e0 for 
which no mutant allele (m) may invade the population and replace 
the resident (M). To do so, we will consider the change in fre‐
quency of the mutant allele over one timestep (Δpm), which can 
be expressed as

with V=1−
(
1−Θ�a

) (
1+

(
x−1

)
ex
0

)
.

Separat ion of  t imesc a les approx imat ion
When selection is weak (ϵ is small), we may assume that the ex‐
cess in homozygotes in the population reaches a value close to 
equilibrium much faster than the allelic frequencies. It is obtained 
by solving

for Dm,m. Thus, assuming the mutant is rare (pm is of order ϵ) we have

Since we have D∗

m,m
≥0 (Equation(A29)), the first term in Equation 

(A28) is always positive, and only V matters for the determination of 
the equilibrium.

Evolut ionar i ly  St ab le Reproduc t ive Ef for t

Injecting Equation (A5) into Equation (A28) and solving ∆ pm = 0 for 
e0 yield the following ESS for the reproductive effort (e*):

with =
(
1−

) (
2−x

) (
1−��j

)
+�a

[
�x

(
1−�j

)
−
[
1−

(
2−x

)] (
1−��j

)]
.

(A20)

 =Θ
(
1−𝛿a

)
o(e)+ (1−Θ)o(e)=S

[
1−

(
e0+

𝜀

2

(
Xm+ Ẋm

))x] (
Θ
(
1−𝛿a

)
+1−Θ

)
.

(A21) =
(
1−Θ𝛿a

)[
1−ex

0
−
x𝜀ex−1

0

2

(
𝜁m+ 𝜁̇m

)]
+o

(
𝜀2
)
.

(A22) =� []≈
(
1−Θ�a

) [
1−ex

0

]
,

(A23)� =



≈1− 𝜀̂s

(
𝜁m+ 𝜁̇m

)
, with 𝜀̂s=

x𝜀ex−1
0

2
(
1−ex

0

) .

(A24)ps
m
=�

[
�
Xm+Xm

2

]
≈pm− 𝜀̂s

(
pmqm+Dm,m

)
,

(A25)Δspm=−𝜀̂s
(
pmqm+Dm,m

)

(A26)Ds
m,m

=�

[
(Xs

m
−ps

m
)(Ẋs

m
−ps

m
)
]
.

(A27)

Ds
m,m

=�

[
� 𝜁m,m−Δspm

(
 𝜁m

)
−Δspm

(
� 𝜁̇m

)
+
(
Δspm

)2]

=�

[
� 𝜁m,m

]
+
(
Δspm

)2
≈Dm,m

(
1−2𝜀̂s

)
.

⎧
⎪⎪⎨⎪⎪⎩

p�
m
= ps

m
+ (1−)p

j
m

D�

m,m
= Ds

m,m
+ (1−)D

j

m,m

Θ� = Θs+ (1−)Θj.

(A28)Δpm≈

[(
1−

)
𝜀̂j− 𝜀̂s

] (
pmqm+Dm,m

)
= 𝜀̂j

(
pmqm+Dm,m

)
V,

D�

m,m
−Dm,m=0

(A29)D∗

m,m
=

Θjpm

2−Θj

⎛
⎜⎜⎜⎝
1−

4 𝜀̂s−3Θj
�
1−

�
𝜀̂j�

1−

� �
2−Θj

�
⎞
⎟⎟⎟⎠
≈

Θj

2−Θj
pm.

(A30)

e∗ =

⎡
⎢⎢⎢⎣

+

�
(−)

2+4
�
1−

� �
x−1

� �
1−�a
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APPENDIX 3
Recur s ions for  the evo lut ion of  se l f‐fer t i l izat ion in a 
perennia l  populat ion

In this section, we detail the mathematical derivations for the evo‐
lution of self‐fertilization in a perennial population. Individuals re‐
produce by self‐fertilization at a rate given by their genotype at a 
single biallelic modifier locus and by random mating otherwise. At 
the modifier, alleles M and m are assumed to be codominant, and 
code for selfing rates α0 and α0 + a, respectively. Allele m is assumed 
to be a rare mutant with a weak effect (i.e. a is small). The theoretical 
framework we use is the same as in Appendix 2.

Reproduc t ion

Let us split the population into two groups: the selfed and the 
outcrossed individuals. The frequency of allele m in each of these 
groups is denoted pm,s and pm,o, respectively, so that its frequency in 
the whole population is given by

where Θ is the proportion of selfed individuals in the population.

Frequenc y of  the mut ant among the se l fed

The contribution of a given parent to the production of selfed off‐
spring, α, is

owing to the fact that increasing its selfing rate by a
2
 induces a two‐

fold transmission advantage in comparison with others (Fisher, 
1941). Injecting �‐variables into Equation (A32), we obtain the fol‐
lowing expression for the relative contribution of a given parent to 
the production of offspring by self‐fertilization:

Thus, the frequency of allele m among the selfed offspring (pj
m,s

) is 
given by

Frequenc y of  the mut ant among the outcrossed

The contribution of a given parent to the production of outcrossed 
offspring, o, is

which yields the following expression for its relative contribution (Õ):

Hence, the frequency of allele sm among the outcrossed offspring 
(pj

m,o
) is

E xcess in homoz ygotes

Considering the whole offspring pool, we may neglect the effect of 
the mutant on the selfing rate. Thus, we may express the excess in 
homozygotes at the modifier among juveniles as

where Θj is the proportion of selfed individuals among the juveniles 
settling in the population (Equation (A3)).

Sur v iva l

Among the parents, allelic frequencies among the selfed and among 
the outcrossed do not vary, because there is no direct selection act‐
ing on the modifier among them. Therefore,

Moreover, we have

Selfed individuals are, however, counterselected due to adult inbreed‐
ing depression. Thus, their proportion varies according to Equation (A2).

Nex t t imes tep

In the next timestep, assuming the proportion of selfed individuals re‐
mains close to its equilibrium value (Θ∗, Equation (A5)), the frequency 
of the mutant (p′

m
) and the excess in homozygotes (D′

m,m
) are given by

where  =o(e)
[
Θ∗

(
1−�a

)
+1−Θ∗

]
 is the proportion of parents sur‐

viving until the next timestep. Using these recursions, we may ex‐
press the change in allelic frequencies at the modifier (Δpm) as

with T=
[
1−o(e)

(
1+�a

)] [
o(e)�a−

(
1−o(e)

) (
1−2�j

)]
.

(A31)pm=Θpm,s+
(
1−Θ

)
pm,o

(A32)𝛼=𝛼0+2×
a

2

(
Xm+ Ẋm

)
=𝛼0+a

(
Xm+ Ẋm

)
,

(A33)𝛼̃=
𝛼

𝛼
=
𝛼0+apm+a

(
𝜁m+ 𝜁̇m

)
𝛼0+apm

=1+
a

𝛼0+apm

(
𝜁m+ 𝜁̇m

)
.

(A34)p
j

m,s
=�

[
𝛼̃
Xm+Xm

2

]
=pm+

a

𝛼0+apm
(pm

(
1−pm

)
+Dm,m).

(A35)o=1−𝛼0−
a

2

(
Xm+ Ẋm

)
,

(A36)õ=1−
a

2
(
1−𝛼0−apm

) (
𝜁m+ 𝜁̇m

)
.

(A37)p
j

m,o
=�

[
õ
Xm+ Ẋm

2

]
=pm−

a

2
(
1−𝛼0−apm

) (pm
(
1−pm

)
+Dm,m).

(A38)D
j

m,m
≈
Θj

2
(pm

(
1−pm

)
+Dm,m)

(A39)ps
m,o

=pm,o andp
s
m,s

=pm,s.

(A40)Ds
m,m

=Dm,m.

(A41)
⎧
⎪⎨⎪⎩

p�
m
= ps

m
+ (1−)p

j
m

D�

m,m
= Ds

m,m
+ (1−)D

j

m,m

,

(A42)Δpm=−
a
(
1−�0�j

)
Dm,m

(
1−o(e)

)

2
[
o(e)

(
1−�0

)
�a+

(
1−o(e)

) (
1−�0�j

)]2 ×T
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Separat ion of  t imesc a les approx imat ions

Assuming homozygosity equilibrates quickly in comparison with al‐
lelic frequencies at the modifier, we obtain a quasi‐equilibrium ex‐
pression (Kirkpatrick et al., 2002) for the excess in homozygotes at 
the modifier (D∗

m,m
) by solving D�

m,m
−Dm,m=0,

Using Equation (A43), one can see that the first term in Equation 
(A42) is always negative, and only T matters for the determina‐
tion of the equilibria. Because T does not depend on α0s, there is 
only two situations: either T> 0 and full outcrossing is maintained 
(α* = 0), or T < 0 and full selfing is favoured (α* = 1). Hence, by solv‐
ing T <  0, we obtain the following threshold for the evolution of 
self‐fertilization:

APPENDIX 4
Numer ic a l  ana lyses

In this section, numerical analysis results are presented along with 
our analytical predictions.

For the evolution of self‐fertilization, the analysis was con‐
ducted starting from α0  =  0 and introducing mutants increasing 
the selfing rate. Good agreement was found between our ana‐
lytical predictions and numerical analyses. Figure A1 shows some 
inbreeding depression threshold values obtained for various lon‐
gevity situations. Either full selfing or strict outcrossing always 
evolved.

For the evolution of reproductive effort, two types of analy‐
ses were conducted: starting from e0 = 0 and introducing mutants 
increasing reproductive effort (upwards analysis, presented in or‐
ange), and starting from e0 = 1 and introducing mutants decreasing 
reproductive effort (downwards analysis, presented in blue). Part 
of the results are presented in Figure A2. Discrepancies between 
upwards and downwards analyses were observed in situations in‐
volving high adult inbreeding depression and low extrinsic mor‐
tality for intermediate selfing rates (Figure A2b). Such situations 
are never reached in the context of the joint evolution of lifespan 
and selfing, because inbreeding depression is too high for selfing 
to evolve and intermediate selfing rates are never evolutionarily 
stable. Besides, good agreement was found between analytical 
predictions and numerical analyses in most cases, especially for 
selfing rates close to 0 or 1 (Figure A2b), which are the states that 
matter for the joint evolution of lifespan and selfing. Therefore, we 
considered our analytical prediction to satisfactorily agree with 
numerical analyses.

(A43)D∗

m,m
=pm

(
1−pm

) �0
(
1−�j

)

2−�0
(
1+�j

) ≥0.

(A44)𝛿j<
1−

(
1+𝛿a

)
o(e)

2
(
1−o(e)

)

F I G U R E  A 1   Numerical analysis results 
for the evolution of self‐fertilization. 
Threshold juvenile ID is presented as a 
function of adult ID, for various survival 
probabilities (o(e)=00.25 ;0.5 ;0.75)
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APPENDIX 5
INbreeding depress ion af fec t ing fecundit y
In this appendix, we investigate the effect of inbreeding depres‐
sion affecting fecundity, that is the contribution of selfed indi‐
viduals to the gamete pool, on the coevolutionary dynamics. In 
Figure A3, we show the equilibria reached by simulations with dif‐
ferent starting points, when setting �j=0 and �f=0.1 ;0.4 ;0.7 with 
δa = 0.4 and S = 0.8. Solid lines represent the analytical expecta‐
tions in the absence of inbreeding depression on fecundity (�f=0), 
and with �j=0.1 ;0.4 ;0.7.

Simulations results are well predicted by these analytical expecta‐
tions, which shows that increasing �f or �j has the same effect: it only 
reduces the range of conditions under which the full selfing strategy 
can evolve. The mechanisms underlying these similar behaviours are, 
however, slightly different. Indeed, whereas in both cases they are 
caused by a reduction of the participation of selfed individuals to 
reproduction, �j decreases the proportion of selfed individuals in the 
population. On the other hand, �f reduces the contribution of selfed 
adults to reproduction by reducing their contribution to the gamete 
pool.

F I G U R E  A 2   Numerical analysis results for the evolution of reproductive effort. ESS reproductive effort is presented as a function of the 
selfing rate, in low ( = 0.95, a and b) and mild ( = 0.75, c and d) extrinsic mortality conditions, with low (∆a = 0.1, a and c) and high (∆a = 0.9, 
b and d) adult inbreeding depression. Numerical analyses are presented in orange (upwards) and blue (downwards). Analytical predictions are 
presented in black
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F I G U R E  A 3  All results presented here assume ∆a = 0.1 and x = 2. Y‐axis is the ESS reproductive effort (e*), and X‐axis is extrinsic 
mortality (). The red line corresponds to the equilibrium reproductive effort when α = 1 is reached. The blue line corresponds to the 
equilibrium reproductive effort when α = 0 is reached. The dashed black line represents the threshold lifetime inbreeding depression under 
which outcrossing can be maintained. Dots depict the results of individual‐centred simulations. When red dots mean α = 1 is reached, 
whereas blue dots mean α = 0 is reached
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