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Abstract. Self-fertilisation is common in hermaphrodites, but selfing rates vary among species and

populations and among individuals within populations. Most evolutionary theory seeking to explain this

variation assumes genetically determined selfing rates. Here we study the evolution and consequences

of condition-dependent selfing, where individuals adjust selfing in response to their deleterious mutation

load. We analyse a two-locus population-genetic model in which one locus determines condition and the

other is a modifier locus that determines condition-dependent selfing rates, and we extend the analysis to

a polygenic background in which condition is determined by many loci. Our results show that selection

favours positive condition dependence: high-condition individuals self-fertilise whereas low-condition

individuals outcross. The resulting reaction norm generates stable within-population variation in realised

selfing rates at evolutionary equilibrium and reduces the mutation load. We further show that it persists

under environmental heterogeneity, and that pollen discounting favours a gradual increase in selfing with

condition, leading to a continuum of selfing phenotypes. Altogether, our results indicate that condition-

dependent selfing can generate substantial within-population variation in selfing rates. It may therefore

contribute to mating-system diversity, and in particular to the maintenance of mixed mating.



1 Introduction

Most plants and many animals are hermaphroditic. In those with an ability to self-fertilise, the selfing

rate varies widely, from predominantly selfing species to strictly outcrossing ones, with many showing

mixed mating in which individuals self-fertilise at an intermediate rate [1–5]. This variation occurs not

only among but also within species, where different populations often exhibit different selfing rates [5],

and within population, where individual plants can differ substantially in their realised selfing rates owing

to environmental and morphological differences [6–9]. Because these patterns determine how genes are

transmitted across generations, explaining the evolutionary mechanisms that shape selfing-rate diversity

within and between populations has been a longstanding problem in evolutionary biology [10–12].

Self-fertilisation comes with major ecological benefits, as it assures reproduction when mates or pollina-

tors are scarce and avoids the costs and risks associated with mate searching (Chap. 1 in [10]; [13–16]).

It also carries an inherent transmission advantage: a selfing parent acts as both mother and father and so

transmits more gene copies per descendant [17]. Against these advantages stands the cost of inbreeding

depression, the reduction in fitness of selfed relative to outcrossed offspring caused by the expression of

recessive deleterious mutations segregating in populations (the ‘mutation load’ [18–20]). According to

classical theory, the interaction between inbreeding depression and the advantages of selfing leads to a

threshold effect in mating-system evolution [21]. In outcrossing populations, recessive deleterious mu-

tations are held at low frequencies and so are almost always found in the heterozygous state. Selfing

increases homozygosity and exposes their effects, which reduces the fitness of selfed offspring [18], but

also makes the purging of mutations more effective. This generates a positive feedback for the evolution of

selfing, because purging reduces inbreeding depression and therefore strengthens selection for increased

selfing. As a result, theory predicts that complete outcrossing should be maintained when inbreeding

depression is above a threshold (strong enough to overcome the benefits of selfing), and complete selfing

should evolve when it is below, so that mixed mating is unstable [21–27].

Much work has since built on this seminal insight to explain the widespread occurrence of mixed mating

in plant populations [2]. Several authors explored the effects of additional mechanisms relevant to the

dynamics of mating, notably limited pollen and seed dispersal [28], variable pollination conditions [29]

and pollen discounting – the reduction in pollen export that can accompany increased selfing [30–34];

all of which were shown to maintain mixed mating in some cases [2]. Others considered more elaborate

biological scenarios for the effects of inbreeding depression, allowing it to vary, e.g., between female and
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male components of fitness [35], as a function of population density [36], or of time and space [37]. These

models show that strong differences in inbreeding depression across contexts can also select for mixed

mating. However, their conclusions rely on the assumption of fixed inbreeding depression and so ignore

purging, a major force in mating-system evolution in the face of which wide within-population variation

in the magnitude of inbreeding depression may not be readily maintained [38].

Most theory on mating-system evolution assumes that the selfing rate is under genetic control, so that all

individuals in the population have the same selfing rate at evolutionary equilibrium (see [2, 13, 39] for

reviews). Yet, individuals may vary substantially in their selfing rates [5–9]. This variation could arise

as a result of stochastic effects in plant-pollinator interactions [14, 40, 41]. However, it could also rise

through a form of plasticity in which individuals adjust their mating behaviour according to environmental

or physiological cues. Plastic responses of various kinds are common in plants, including on mating-

related traits such as herkogamy or the timing of autonomous selfing, which have been shown to vary

with environmental conditions [41–44]. One form of plasticity leading to inter-individual differences in

selfing that has received particular attention is delayed selfing, where individuals self-fertilise only when

outcrossing fails [45–47]. This plastic response is favoured in uncertain pollination environments, where

the benefits of selfing vary between individuals [29, 48]. Much less attention has been paid to the fact

that the costs of selfing should also vary among individuals in a population, simply because individuals

inevitably differ in the number of deleterious mutations that they carry. In this context, a form of plasticity

where individuals adjust their mating behaviour to their individual condition – an individual’s overall

vitality given its genetic background and environment – could also be favoured.

The notion that mating-related traits are expressed plastically in response to individual condition is well-

established in dioecious animals [49–52]. It relies on the idea that secondary sexual traits are costly to

produce and maintain. Individuals in good condition can afford to express larger ornaments, stronger

courtship displays or more competitive behaviours, whereas those in poor condition cannot. This makes

such traits reliable indicators of genetic quality, which the other sex (often females) can use when choosing

mates to obtain indirect genetic benefits, as their offspring inherit alleles associated with higher condition

[49, 53, 54]. Condition dependence also plays a central role in models of plastic switches between sexual

and asexual reproduction. In these models, selection favours modifier alleles that increase the rate of sex in

low-fitness genotypes, because recombination then allows the modifier to escape such deleterious genetic

backgrounds [55–57]. Even so, the idea that an individual’s selfing rate might be a plastic response to its

condition, particularly its genetic condition, appears not to have been considered.
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In this paper, we investigate the evolution of condition-dependent selfing using a combination of math-

ematical modelling and individual-based simulations. As a baseline, we analyse a two-locus model in

which one locus affects condition and the other controls genotype-specific selfing rates, to ask whether

selection favours individuals in different genetic conditions to self-fertilise at different rates. Because in-

breeding depression is thought to arise from deleterious mutations at many loci, we then consider a more

realistic polygenic case in which condition depends on mutations at numerous loci, and the selfing rate

of each individual is determined by a gene-regulatory network that can evolve to respond to condition

[58–61]. This approach lets us examine how the reaction norm linking condition to selfing evolves, while

placing minimal constraints on its shape.

In the last part of the paper, we examine how two additional factors might modify the evolution and sta-

bility of condition-dependent selfing. The first is the effect of the environment on condition. Individual

condition not only reflects genetic differences but also environmental variation in factors such as resource

availability, competition, and exposure to pests and diseases [62, 63]. When condition-dependent selfing

relies on condition as a cue to genetic condition, environmentally induced variation can blur the associa-

tion between condition and genotype at loci affecting condition, which raises the question of whether envi-

ronmental effects on condition could weaken, modify or perhaps even destabilise condition-dependent dif-

ferences in selfing rate within populations. The second factor is the effect of pollen discounting on the bal-

ance between selfing and outcrossing. Pollen discounting measures the extent to which self-fertilisation

reduces an individual’s success as a pollen donor [32]. This can occur when pollen that could have sired

outcrossed progeny is instead deposited on the same plant, either within flowers or via geitonogamous

transfer among flowers [64, 65], or when changes in floral morphology that promote selfing, for instance

reductions in herkogamy, compromise pollen export [66]. Such effects are known to alter the optimal

selfing rate and can favour mixed mating under some scenarios [33]. In a condition-dependent scenario,

pollen discounting may affect how selfing benefits vary with condition, and could therefore influence the

shape of the reaction norm.

2 Condition-dependent self-fertilisation is favoured as an escape strategy

2.1 Two-locus model

We consider a large population of diploid hermaphrodites characterised by their genotype at two loci

(Fig. 1). The first locus affects condition with two alleles: a wild-type allele ‘A’ and a deleterious allele
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‘a’. The condition of individuals with genotype AA, Aa and aa at this locus, which we refer to as the

‘condition locus’ hereafter, is given by φAA = 1, φAa = 1 − sh and φaa = 1 − s, respectively, where

s is the deleterious effect of allele a on condition and h is its dominance coefficient. During meiosis,

the wild-type allele A mutates into deleterious allele a with probability µA and the deleterious allele a

mutates into wild-type allele A with probability µa, so that the locus remains polymorphic at a balance

between mutation and selection, and individuals in the population vary in their condition. The second

locus is a selfing modifier at which alleles are additive and pleiotropically encode three genotype-specific

selfing rates, α = (αAA, αAa, αaa) ∈ [0, 1]3, which express conditionally on genotype at the condition

locus (e.g. αAA is the selfing rate expressed in a AA homozygote). In this model, condition-dependent

selfing therefore occurs whenever genotype-specific selfing rates differ. These rates each evolve via the

input of rare and independent mutations of small and unbiased phenotypic effects (“continuum-of-alleles”

model; [67]).
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Figure 1: Life cycle and genetic bases of condition and selfing.

Each generation, individuals pass through the following life cycle events. (1) Gamete production: They

first produce a large number of female and male gametes proportionally to their condition φx1x2 , where

x1, x2 ∈ {A, a} denote the two alleles carried by the individual at the condition locus. The two loci

recombine at rate r ∈ [0, 1/2] and mutation occurs at the condition locus at a rate µx, x ∈ {A, a}, per

allele during gametogenesis. (2) Mating: Individuals then self-fertilise a fraction αx1x2 of their ovules,

which depends on their genotype at the modifier and on their condition. The remaining fraction of ovules

1 − αx1x2 is fertilised via random mating. We assume that there is enough pollen exchanged for all
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ovules to be fertilised (i.e., no pollen limitation), and that self-fertilising does not reduce an individual’s

contribution to the outcross pollen pool (i.e., no pollen discounting – we later relax this assumption).

(3) Recruitment: Once all ovules have been fertilised, seeds mature, adults die and the next generation is

sampled from the produced seeds, so that the population remains of large and constant size.

2.2 Effect of condition-dependent selfing on the condition locus

We start by fixing the relationship between selfing and condition to investigate how condition dependence

influences the equilibrium frequency of the deleterious allele p∗ and resulting mean condition φ∗ in the

population.

Linear condition dependence. In order to gain analytical traction, let us assume a linear relationship

between condition and selfing, with genotype-specific selfing rates given by

α = (αAA, αAa, αaa) =
(
α0, α0 − dαh, α0 − dα

)
, (1)

where α0 ∈ [0, 1] is the selfing rate of wild-type homozygotes, and dα ∈ [−α0, 1−α0] gives the strength

of condition dependence (where the dominance coefficient h of the deleterious allele features in the selfing

rate of heterozygotes to ensure that the selfing rate varies linearly with condition, see Fig. 2A). Selfing

rates are independent of condition when dα = 0, whereas the population experiences positive condition

dependence for the selfing rate when dα > 0 and negative condition dependence when dα < 0 (Fig. 2A).

Under this assumption, we show in Appendix A.1.2 that the equilibrium frequency of allele a can be

expressed as

p∗ =


µA(

s+ dα/2
)[
h (1− F ) + F

] +O
(
s2
)

when dα > −2s

1− µa[
−(s+ dα/2)

][
1− h(1− F )

] +O
(
s2
)

when dα < −2s

(2)

to first order in s (i.e., under weak variation in fitness), where

F =
α0

2− α0
(3)

is the expected inbreeding coefficient at a neutral diallelic locus under partial selfing and without condition

dependence (see, e.g., pp. 92–94 in [68]). This first-order approximation closely matches the equilibrium
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frequency obtained when solving exact recursions numerically (Fig. 2B; Appendix A.1.2 for details).

The equilibrium frequency given in eq. (2) reflects a balance between mutation at the numerator and selec-

tion at the denominator, reducing to the classical expression for a deleterious allele at mutation-selection

equilibrium in a partially selfing population in the absence of condition dependence (dα = 0; eq. 6b in

[21]). Condition dependence appears at the denominator, where it modulates the intensity of selection

against allele a. Positive condition dependence (dα > 0) decreases the equilibrium frequency of allele a

relative to the condition independent case, whereas negative condition dependence (dα < 0) increases its

frequency. Strongly negative condition dependence (dα < −2s, second line in eq. 2) can even bring the

deleterious allele close to fixation (selection on allele a becomes positive as s+dα/2 becomes negative),

where it is then maintained at a balance between selection and mutation reintroducing wild-type alleles

into the population (Fig. 2B). Here, condition dependence affects selection at the condition locus because

it leads alleles A and a to be associated with different average selfing rates: the allele associated with the

higher rate enjoys a transmission advantage over the other, as selfing parents contribute more gene copies

per offspring on average [17], which causes this allele to increase in frequency.

The effect of condition dependence on the equilibrium frequency of the deleterious allele is reflected in

the mean condition of the population, which increases as this allele becomes less frequent under positive

condition dependence, and conversely decreases under negative condition dependence (white triangles in

Fig. 2B).

Arbitrary relationship between condition and selfing. We next investigate how the mechanism iden-

tified in the linear case applies more generally, by computing the equilibrium frequency of allele a for

arbitrary genotype-specific selfing rates using a numerical approach. Consistent with our analytical re-

sults, we find that deleterious allele a can rise to a high frequency once the selfing rate of deleterious

homozygotes (αaa) is sufficiently high relative to that of wild-type homozygotes (αAA), owing to the

transmission advantage that it then enjoys (Figs. 2C-E). In addition, we find that whereas polymorphism

was always maintained at a balance between mutation and selection in the linear case (and so would

collapse in the absence of recurrent mutation), both alleles can persist as a protected polymorphism with-

out recurrent mutation when heterozygotes show a higher selfing rate than both homozygotes. This is

because the allele that is rarest in the population is more likely to be found in heterozygous state, and

so has a higher average selfing rate than the frequent allele when heterozygotes self-fertilise more than

homozygotes, leading to a form of overdominance and the maintenance of polymorphism (we show this

analytically in Appendix A.1.3).
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Figure 2: Effect of condition-dependent selfing on evolution at the condition locus. A Linear relationship between
condition and the selfing rate, as assumed to compute eq. (2). dα < 0 leads to negative condition dependence and
dα > 0 leads to positive condition dependence. B Equilibrium frequency of the deleterious allele a, p∗, and mean
condition at this equilibrium, φ∗, as a function of the strength of condition dependence, dα. Dots and triangles
respectively indicate the equilibrium frequency and mean condition computed numerically without approximation.
Lines indicate the analytical approximations for p∗ given in eqs. (2). Parameters specific to this plot: α0 = 0.5. C-
D-E Equilibrium frequency p∗ as a function of the selfing rates of wild-type homozygotes (x-axis) and deleterious
homozygotes (y-axis) at the condition locus in the general case, for three selfing rates of heterozygotes (αAa =
0, 0.5, 1 from left to right). Parameters used in all plots: s = 0.05, h = 0.25, µA = µa = 10−3.
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2.3 Evolution of condition-dependent selfing

We now consider the evolution of condition-dependent selfing. To characterise selection on genotype-

specific selfing rates α = (αAA, αAa, αaa), we employ an invasion analysis approach to compute the

selection gradients on each of these rates, sAA (α), sAa (α), and saa (α), which we collect in vector

s(α) =
(
sAA (α) , sAa (α) , saa (α)

)
. (4)

Each of these gradients captures the strength and direction of selection on the corresponding genotype-

specific selfing rate in a population expressing α (Appendix A.2.1, [69]). A positive (resp. negative)

selection gradient indicates that selection favours an increase (resp. decrease) in trait value, and the abso-

lute value of the gradient indicates the strength of selection in this direction. Thus, condition dependence

is favoured here whenever the sign of the gradient differs between genotype-specific selfing rates. We

provide a detailed account of our analyses in Appendix A.2 and summarise our key results below.

Computing the selection gradients analytically for any α is difficult. We therefore start by investigating

special cases where analytical expressions can be obtained, beginning with the case where the population

is completely outcrossing (i.e., α = 0). We show in Appendix A.2.2 that the selection gradients are then

given by

s(0) =

(
1

4
+O (s) ,

µA

2sh
+O

(
s2
)
,
( µA

2sh

)2
+O

(
s3
))

=

(
q∗AA

4
+O (s) ,

q∗Aa

4
+O

(
s2
)
,

q∗aa
4

+O
(
s3
))

,

(5)

where q∗AA, q∗Aa and q∗aa are the frequencies of genotypes AA, Aa and aa in the outcrossing population,

respectively. The three gradients in eq. (5) are proportional to these frequencies because the strength of

selection on a trait is proportional to the frequency with which it is expressed. Further, they are all positive,

meaning that selection favours self-fertilisation irrespective of condition in a fully outcrossing population.

This is because, when the rest of the population is fully outcrossing, alleles coding for increased self-

fertilisation benefit from a substantial transmission advantage regardless of condition.

We next compute selection gradients under complete selfing, that is, in a population fixed for
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α = 13 = (1, 1, 1). We show in Appendix A.2.3 that these are given by

s(13) =

(
1

2
+O (s) ,

µA

1 + 2r
+O

(
s3
)
, − r

1 + 2r

µA

s
+O

(
s2
))

=

(
1

2
q∗AA +O (s) ,

1

4(1 + 2r)
q∗Aa +O

(
s3
)
, − r

1 + 2r
q∗aa +O

(
s2
))

,

(6)

which indicates that in a completely selfing population, wild-type homozygotes and heterozygotes are

selected to remain fully selfing (sAA (13) > 0 and sAa (13) > 0), whereas deleterious homozygotes are

selected to become more outcrossing (saa (13) < 0).

This can be understood as follows. In a completely selfing population, heterozygous individuals at the

condition locus are rare (only produced by mutation and rapidly removed due to inbreeding) and ho-

mozygotes only produce offspring of the same genotype (unless mutation occurs, which is negligibly rare

because µx ≪ s). As a result, wild-type and deleterious homozygotes effectively form distinct lineages

that do not cross, but compete for breeding spots. In this setting, deleterious homozygote lineages leave

no descendant in the long-term because they are always outcompeted by the wild-type, so that their class-

reproductive value tends to zero (see Appendix A.2.3 for details). Now, consider the fate of a mutant allele

arising at the selfing modifier in a deleterious homozygote individual. If such an allele encodes complete

selfing in this genetic context, it is guaranteed to leave no long-term descendant because it is trapped in

a lineage that is doomed to extinction. In contrast, if this allele encodes some outcrossing, some of the

ovules produced by its bearer will be outcrossed by pollen carrying the wild-type allele at the condition

locus, which will give the mutant allele an opportunity to recombine onto a wild-type haplotype. Thus,

from the point-of-view of alleles at the selfing modifier, outcrossing constitutes a strategy of escape from

certain doom and is favoured as such. In line with this interpretation, the strength of selection on αaa

is zero in the absence of recombination (r = 0) because there is then no way to escape the deleterious

background through outcrossing, and increases with r (eq. 6).

Finally, we analysed the evolution of genotype-specific selfing rates in the general case using a numeri-

cal approach described in Appendices A.2.4 and A.2.5. This analysis reveals that while selection always

favours an increase in the selfing rate of wild-type homozygotes and heterozygotes, the genetic escape

mechanism described above selects for ever lower selfing rates in deleterious homozygotes once other

genotypes are highly selfing, so that eventually the population converges to complete outcrossing in dele-

9



terious homozygotes and complete selfing in other genotypes, i.e.,

α∗ = (1, 1, 0) (7)

at evolutionary equilibrium, when recombination is sufficiently frequent (r ≫ 0; Supp. Fig. S1). In-

tuitively, once other genotypes are fully selfing, it is always preferable for deleterious homozygotes to

outcross more, as any selfing lowers the chances of modifier alleles to escape this poor background.

When the recombination rate is very low (r ≈ 0), however, complete selfing evolves for all genotypes.

This is because the advantage of outcrossing as a deleterious homozygote becomes weak in this case, as it

provides poor chances of recombining onto a wild-type haplotype (i.e., to escape), so that the production

of wild-type offspring through mutation and selfing becomes a better escape route. Accordingly, this

effect vanishes and condition dependence is always favoured when the deleterious allele cannot mutate

back into the wild-type (µa = 0; Fig. S2 in Appendix A.2.5).

3 Polygenic condition and the evolution of condition-dependent selfing

Our two-locus model suggests that selection broadly favours positive condition dependence for the selfing

rate. We now consider the likely more realistic case where condition is the result of expression of alleles at

many loci. Such a polygenic case is relevant because numerous deleterious mutations typically segregate

simultaneously in natural populations and contribute to inbreeding depression, the principal force oppos-

ing selfing evolution, which is almost absent from the two-locus model [20, 22, 70, 71]. Investigating the

evolution of condition-dependent selfing in this setting becomes more challenging, as individuals may

carry many different multilocus genotypes at condition loci, so that we can no longer rely on a modifier

locus encoding genotype-specific selfing rates. Instead, we must now consider the evolution of the plastic

response of selfing to condition as a function that takes individual condition as input and returns a mating

strategy. To study this, we turn to individual-based simulations.

3.1 The model

We simulate a population of N diploid hermaphrodites that follow the same life cycle as in the two-locus

model: each individual i ∈ {1, . . . , N} first produces male and female gametes proportionally to its

condition φi and then self-fertilises a fraction αi of its ovules, while the remaining fraction is fertilised
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via random mating. Following mating, seeds mature, adults die and the next generation is recruited from

the produced seeds.

Individual condition is affected by L ⩾ 1 unlinked loci. Each locus ℓ ∈ {1, ..., L} has two alleles, a

wild-type allele Aℓ and a deleterious allele aℓ which mutate during meiosis at a rate µA = µa = µ

(i.e., mutation to and from the deleterious allele occur at the same per-allele rate). Allele aℓ decreases

individual condition by a proportion s when homozygous, and expresses proportionally to its dominance

coefficient h when heterozygous. Condition loci are assumed to act multiplicatively [71, 72], so that the

condition φi of an individual i homozygous for the deleterious allele at n(i)
hom loci and heterozygous at

n
(i)
het loci is given by

φi = (1− s)n
(i)
hom(1− sh)n

(i)
het . (8)

To model the evolution of condition-dependent self-fertilisation, that is of the function

αi = f(φi) (9)

that takes the condition φi of individual i as input and returns its selfing strategy αi, one approach would

be to assume that f (φi) has a specific shape (e.g., a linear function of condition [73]) and consider the

evolution of its parameters (e.g., its slope and intercept in the linear case). This approach simplifies

the analysis, but introduces constraints that might interfere with the evolution of condition dependence.

Instead, we assume that the selfing rate expressed by an individual is determined by a gene regulatory

network that may evolve to respond to condition (Fig. 3A). Gene regulatory networks have been used

in other contexts to model the evolution of a plastic responses to abiotic or social cues (e.g., [59–61]).

They have been shown to be able to produce a wide range of functions from a limited number of genes,

therefore allowing us to study the evolution of condition-dependent selfing with fewer constraints.

The architecture of the network is inspired from the Wagner model [58] and closely resembles the one used

by previous authors [59–61]. A detailed explanation of the network model can be found in Appendix B.1.

Briefly, the network involves a fixed number of loci, each of which contains a protein-coding gene that

is expressed during individual development from seed to adult, and contributes to determining its selfing

rate at the adult stage. The level of expression of these genes throughout the development of an individual

is influenced by individual condition and by loci involved in the network (including by themselves), which

may up- or down-regulate gene expression through cis-regulatory interactions. The selfing rate expressed

by the individual is obtained as a weighted sum of the steady-state expression levels reached by network
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loci at the end of development (Fig. 3A). The attributes of network loci that control their sensitivity

to condition and regulatory interactions as well as their final contribution to phenotype evolve under a

‘continuum-of-alleles’ model [67]. Alleles at each network locus are additive, so that the attributes of

a given locus in a diploid individual are given by the average of the two alleles, and network loci are

assumed to recombine freely during meiosis. Further details on the model can be found in Appendix B.1.

3.2 Condition-dependent selfing evolves from gene-regulatory interactions and reduces

the mutation load

We ran simulations for dominance coefficients ranging from h = 0.10 to h = 0.45 while keeping all other

parameters fixed (see figure caption for parameter values, and Appendix B.1 for details on the simulation

procedure). For each parameter set, we ran ten replicates of the model and additionally ran ten “control”

runs where the network received a random value sampled from a uniform distribution as input instead

of condition. These controls allowed us to check that the relationship between condition and selfing that

evolves in our model is due to selection for condition dependence and not an artefact of network structure.

For each simulation, the population was initialised as fixed for wild-type alleles at all condition loci and

monomorphic for network loci attributes sampled in a normal distribution with mean zero and standard

deviation 2σg, except for output weights which were fixed at zero to ensure that the population was initially

fully outcrossing. Mutation was switched off at network loci for the first 5× 103 generations to allow the

population to reach mutation-selection balance at condition loci. Mutation was then allowed at network

loci, and simulations were left to run for a total of 5× 105 generations.

When inbreeding depression was weak enough to allow the initial emergence of self-fertilisation from

initially complete outcrossing, simulations of our complete model then always showed the gradual emer-

gence of condition dependence (Fig. 3B) and the establishment of a step-wise relationship between con-

dition and selfing, with individuals above a condition threshold being purely selfing and lower condition

individuals being purely outcrossing (Fig. 3C). In contrast, control runs remained close to complete out-

crossing for high levels of inbreeding depression (δ > 1/2, [21]) and evolved near complete selfing

otherwise, with little variance in selfing rate among individuals in both cases (grey triangles in Fig. 3D),

as expected in the absence of information on individual condition. The step-wise relationship that evolves

in our simulations is consistent with the notion that positive condition dependence evolves as an escape

strategy from deleterious backgrounds. Indeed, from the point of view of a selfing modifier, the cost-

benefit balance of selfing (staying) versus outcrossing (escaping) in a particular genetic background is
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Figure 3: Evolution of condition-dependent selfing and its effect on the mutation load. A A gene regulatory
network with ng = 2 loci. Gene expression is affected by condition in proportion to input weights and by regulatory
interactions among loci, which are given by the regulatory matrix. Once loci reach a steady state expression level,
their equilibrium expression level is combined proportionally to output weights to obtain the individual’s mating
strategy. See Appendix B.1 for details. B Distribution of selfing rates in the population as a function of time in a
sample simulation with L = 103 loci affecting condition. Shades of green indicate the proportion of individuals
with a selfing rate in the corresponding interval at a given time step. The darker the colour, the more individuals.
Triangles indicate the mean selfing rate and black points indicate variance scaled by the highest possible variance
(variance of a binomial distribution with success probability 1/2, which corresponds to a case where exactly half
of the population has a selfing rate α = 0 and the other half has α = 1). The population rapidly evolves complete
selfing once mutation is triggered at network loci, and then experiences the gradual establishment of condition
dependence. Parameters specific to this simulation: h = 0.25. C Distribution of evolved condition-dependent
selfing strategies for a hundred individuals every 50 generations over the last 105 generations. The solid black line
indicates the median, grey shading gives the first and third quartiles and dashed lines indicate the minimal and
maximal values, respectively, for each condition value. All individuals express a step-wise relationship between
condition and selfing, varying only in the position of their step. D Mean and variance in the selfing rate averaged over
the last 105 generations and between replicates. Blue points indicate runs of the complete model and grey triangles
indicate control runs, darker colours indicate higher dominance coefficients (see legend on top right corner). The
dashed line indicates the maximum achievable variance, which is reached when the population evolves condition-
dependent selfing. The solid blue line connects replicates of the complete model for h = 0.15, some of which
evolved condition-dependent selfing (4 out of ten), while the rest remained fully outcrossing. E Mean condition
and inbreeding depression at evolutionary equilibrium as a function of the dominance coefficient of deleterious
mutations. Open circles indicate where initial populations stood under complete outcrossing. Full circles indicate
simulations where condition dependence evolved, and stars show the outcome of simulations with the same mean
selfing rate, but no condition dependence. Parameters used in all simulations: N = 5 × 103, L = 103, s = 0.05,
µ = 5× 10−4, µg = 5× 10−3, σg = 5× 10−2.
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independent of the selfing rate expressed by its bearer. Either the load carried by the bearer is sufficiently

low for selfing to be beneficial, or the load is high enough to make outcrossing preferable.

We also quantified the effect of condition dependence on the mutation load maintained at mutation-

selection balance. To do this, we simulated populations with a fixed selfing rate that we took to be the

average selfing rate observed over the last 5× 104 generations in simulations where condition-dependent

selfing evolved. We then compared the equilibrium mean condition and inbreeding depression attained in

these fixed selfing simulations with the corresponding simulation runs where condition dependence had

evolved (Fig. 3E). We found that positive condition dependence increases mean condition substantially

and decreases inbreeding depression relative to the fixed selfing case. This is because positive condition

dependence grants a transmission advantage to wild-type alleles, as they tend to be found in individuals

in better condition who self-fertilise at a higher rate, which leads to more efficient purging.

Overall, simulation results indicate that the mechanisms described in our two-locus model also apply when

condition is affected by many loci. Positive condition dependence for the selfing rate is favoured by natural

selection, as it offers modifiers an escape strategy from more deleterious backgrounds, and reduces the

mutation load in the population. Under the scenario considered here, selection favours an extreme form of

condition dependence whereby low-condition individuals are fully outcrossing and high-condition ones

are fully self-fertilising. We next extend our simulation model to investigate how two additional ecological

mechanisms, namely environmental fluctuations (Section 3.3) and pollen discounting (Section 3.4), might

influence the evolution of condition-dependent selfing.

3.3 Environmental fluctuations destabilise condition dependence

So far, variation in condition between individuals was only determined by their genotype at condition

loci. However, variation in condition can also result from environmental differences between individuals

[62, 63], for example if some individuals germinate on better quality soil or in less disturbed areas than

others. Environmental effects might be especially relevant to the evolution of condition-dependent selfing,

because they may obscure the relationship between individual condition and genotype at condition loci,

which could in turn affect the evolution of condition dependence.

To study these effects, we simulate a population that follows the same life cycle as before (Section 3.1),

except that it now evolves in a heterogeneous environment composed of many patches that host one adult

plant each. Seeds produced by these plants are all dispersed away from their natal patch. Each patch
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is characterised by an environmental variable, ϵi, which changes every generation and follows a normal

distribution, i.e.,

ϵi ∼ N (0, 1). (10)

This variable could represent any relevant ecological factor, such as exposure to sunlight or water avail-

ability. A patch with ϵi = 0 is optimal for plant development, and any deviation from this optimum

reduces individual condition. More precisely, the condition of individual i, carrying n
(i)
het and n

(i)
hom het-

erozygous and homozygous deleterious mutations and developing in an environment ϵi is given by

φi = exp

(
−∆E

ϵi
2

2

)
(1− s)n

(i)
hom(1− sh)n

(i)
het , (11)

where the first term captures the effect of the environment on condition, and the second and third term

give the effect of mutations in homozygous and heterozygous state on condition, as before. The intensity

of environmental effects increases with parameter ∆E ⩾ 0, and a stable environment is recovered when

∆E = 0.

We ran simulations where we varied the intensity of environmental effects (∆E = {0.05, 0.25, 0.5, 1}),

keeping all other parameters fixed for values that allowed the emergence of condition dependence in

a stable environment. We find that environmental fluctuations have little impact on the evolution of

condition-dependent selfing when their effect on condition is moderate (∆E = 0.05 and ∆E = 0.25): a

step-wise relationship between condition and selfing eventually evolves and is stable once established in

most replicates, resulting in a high variance in selfing rate (Fig. 4A). Under strong environmental effects

(∆E ⩾ 0.5), meanwhile, evolutionary trajectories vary widely between replicates. Some rapidly evolve

a step-wise relationship, whereas others take much longer to do so, sometimes remaining at a low level

of condition dependence for the entire simulation, with a low variance in selfing rate. These differences

among replicates are likely due to the fact that environmental fluctuations make condition a poorer indica-

tor of individuals’ genetic background and therefore weaken selection for condition dependence: because

network loci are initialised with random attributes at the beginning of each simulation, some populations

have an easier time evolving condition dependence than others from their initial state, and while this is

the case in a stable environment as well (∆E = 0, see Fig. S3), differences between populations are likely

exacerbated under weaker selection.

We also find that strong environmental effects can affect the stability of condition-dependent selfing once it

has evolved, with some populations repeatedly losing and later re-evolving it (Fig. 4B; see Supp. Figs. S3-

S7 in Appendix B.3 for more replicates). This repeated loss of condition dependence may be due to the

15



E

A

B

Figure 4: Effect of environmental fluctuations on the evolution of condition-dependent selfing. A Distribution of
selfing rates in the population in the last 105 generations of the simulation for ten replicates and different strengths
of environmental effects, increasing from left to right. Shades of green indicate the proportion of individuals ex-
pressing a selfing rate in the corresponding interval. The darker the colour, the more individuals in that interval (the
colour scale is the same as below). Blue box plots show the distribution of the variance in selfing rate in the pop-
ulation over the last 105 generations. The distribution is bimodal with complete selfers and complete outcrossers,
resulting in high variance when environmental effects are weak. Stronger environmental effects lead to more di-
verse distributions because they hinder the emergence of condition dependence and lead to its recurrent collapse
and re-emergence once evolved. B Distribution of selfing rates in the population as a function of time in a sample
simulation under strong environmental fluctuations (∆E = 1). Shades of green indicate the proportion of individu-
als with a selfing rate in the corresponding interval at a given time step. The darker the colour, the more individuals.
Triangles indicate the mean selfing rate and black points indicate variance. The population initially evolves con-
dition dependence, and then repeatedly loses and re-evolves it. Parameters used in all simulations: N = 5 × 103,
L = 103, s = 0.05, h = 0.25, µ = 5× 10−4, µg = 5× 10−3, σg = 5× 10−2.
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fact that strong environmental effects often cause individuals with a good genetic background to be in

poor condition, which leads them to outcross despite selfing being their optimal strategy. In this context,

an allele making its bearer fully selfing irrespective of condition could increase in frequency if it finds

itself in a good genetic background, and cause the collapse of condition dependence.

3.4 Pollen discounting leads to a continuum of mating strategies

Traits that promote selfing often interfere with pollen export, giving rise to a trade-off between selfing and

male siring success through outcrossing known as pollen discounting [32], which can favour intermediate

selfing rates in the absence of condition dependence [33]. As a final extension, we study the effect of

pollen discounting on the evolution of condition-dependent selfing. We consider a population evolving

in a stable, homogeneous environment (i.e., no environmental fluctuations). Individuals follow the same

life cycle as before (Section 3.1), except that the amount of pollen exported by individual i, βi, and so its

contribution to the outcrossing pollen pool, now decreases with its selfing rate. Specifically, it is given by

βi = φi (1− καi
γ) , (12)

where κ ∈ [0, 1] measures the intensity of pollen discounting, and γ > 0 is a parameter controlling the

shape of the trade-off between selfing and pollen export (see Appendix B.2.2 for details).

Previous work demonstrates that linear or convex trade-off curves (γ ⩽ 1) do not allow the maintenance

of intermediate selfing rates [27, 33], and so should not lead to qualitatively new results in our model. We

therefore focused on concave relationships (γ > 1). We varied the intensity (κ) and concavity (γ) of the

trade-off between selfing and pollen export, while keeping all other parameters fixed. Our simulations

show that weak pollen discounting (small κ) leads to a step-wise relationship – similar to the baseline

model – irrespective of the shape of the trade-off curve, presumably because pollen discounting only

weakly affects the costs and benefits of selfing in this case. Stronger pollen discounting (large κ), in

contrast, favours a more gradual increase in selfing rate with individual condition, leading to a continuum

of selfing strategies (Fig. 5A,B). This is because the cost of selfing in terms of siring success increases

sharply with the selfing rate under strong pollen discounting, causing the benefits of self-fertilisation to

be overcome by the loss of outcrossing opportunities past a critical selfing rate that depends on condition.

These results illustrate that including additional mechanisms relevant to the dynamics of mating can alter

the relationship that evolves between condition and selfing, resulting in a diverse array of condition-

dependent, mixed mating strategies.
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We also quantified the effect of condition dependence on the load by comparing mean condition in the

population at mutation-selection equilibrium with mean condition in a population where individuals have

the same, fixed selfing rate given by the mean selfing rate observed in simulations where condition de-

pendence evolved. We find that condition dependence again reduces the load relative to the condition

independent case, though the effect is less pronounced for more linear trade-off curves (Fig. 5C). This is

because more linear curves cause pollen discounting to increase more rapidly with selfing, which leads

to lower selfing rates in highest-condition individuals. As a result, the difference in selfing rate between

individuals with different genetic backgrounds is reduced, which decreases the transmission advantage

enjoyed by wild-type alleles and so makes purging owing to condition dependence less efficient.
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Figure 5: Effect of pollen discounting on the evolution of condition-dependent selfing and the mutation load. A-B
Evolved condition-dependent selfing strategies in sample simulations under strong pollen discounting (κ = 1) for
γ = 2 in panel A and γ = 3 in panel B. Shades of green represent the selfing rate and condition of a hundred
individuals every 50 generations over the last 105 of a sample simulation. The lines give the quantiles of the
distribution of selfing rates encoded by the gene regulatory networks carried by these same individuals as a function
of condition. The solid line gives the median and the grey shading indicates the first and third quartiles. The dashed
lines give the maximum and minimum selfing rates observed in the simulations. Note that the relationship between
condition and selfing is only subject to selection over the range of condition values that actually occur, so that
there are intervals on both ends of the relationship that behave as effectively neutral. The blue histograms give the
distribution of condition (top) and selfing rate (right) in the population over the last 105 generations. C Effect of
condition dependence on mean condition under strong pollen discounting. Points indicate mean condition over the
last 105 generations of simulations where condition dependence evolved, and stars indicate mean condition in a
simulation with a fixed selfing rate, taken to be the average rate observed in the corresponding simulation where
condition dependence evolved. Parameters used in all simulations: N = 5 × 103, L = 103, s = 0.05, h = 0.25,
µ = 5× 10−4, µg = 5× 10−3, σg = 5× 10−2.
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4 Discussion

Most theory on the evolution of self-fertilisation considers genetically determined, non-plastic mating

strategies [2, 39]. In this paper, we investigated how condition-dependent selfing might evolve, whereby

individuals plastically adjust their mating strategy according to their biological condition. We found

that positive condition dependence, whereby higher condition individuals self-fertilise at a higher rate,

evolves whenever the mutation load is weak enough to allow the initial emergence of self-fertilisation

from complete outcrossing. This positive relationship between selfing and condition is favoured as an es-

cape strategy from deleterious genetic backgrounds, similar to the “abandon ship” mechanism, which has

been shown to select for individuals in poorer condition to engage more in sexual reproduction [55, 56],

recombine more often [57], and undergo mutation at a higher rate during meiosis [74]. The evolution of

condition-dependent self-fertilisation therefore represents a novel manifestation of a more general mech-

anism, with specific biological implications that we discuss below.

We showed that selection favours a positive relationship between condition and the selfing rate, which we

modelled as a single trait. In reality, however, the rate at which a plant self-fertilises is likely determined

by the interaction of many aspects of its phenotype including, for example, the distance between anthers

and pistils [75], the strength of self-incompatibility reactions in the style [76], the plant’s allocation to

pollen production [77, 78] or the overlap in the timing of sexual maturity of its female and male function

[4, 79]. Our results imply that all these traits, rather than the selfing rate directly, should be under selection

to evolve condition-dependent expression through their effect on selfing. The degree of condition depen-

dence favoured for a given trait may however depend on several factors. A key factor that we highlighted

is how much pollen discounting is caused by the trait when promoting selfing, as we showed that the shape

and intensity of the relationship between selfing and pollen export is critical to the condition-dependent

strategy favoured by selection. Traits that affect selfing are also likely to be under selection from other

ecological and physiological sources, such as pollinator preferences or functional constraints (e.g., on

floral morphology [65]), as well as life-history trade-offs, which could interact with selection for condi-

tion dependence in ways that have not been explored. In the future, understanding how this interaction

between sources of selection shapes the evolution of traits affecting the selfing rate may provide useful

insight into the diversity and phenotypic underpinnings of mating strategies in hermaphroditic species,

and in particular into the mechanisms promoting the evolution of mixed mating, which remain elusive

[2, 39].
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Among the many traits that affect selfing, plant size has received special attention. At an intraspecific

level, larger plants typically show elevated selfing rates, a pattern usually viewed as an inevitable conse-

quence of the increase with size of pollen transfers among flowers of the same individual (geitonogamy;

[64]), and interpreted as a cost to larger plants in terms of lost outcrossing opportunities [12, 64, 66].

Our results suggest that this increased selfing in larger plants may also be favoured by selection through

two pathways. First, the size of a plant depends on its ability to extract resources from the environment

and allocate them to growth, and is therefore inherently condition-dependent. If higher-condition plants

tend to be larger, then condition-dependent selfing would cause larger individuals to self-fertilise more

frequently even if size per se did not affect selfing. Second, since plant size is indeed thought to have an

effect on its selfing rate, allocation to growth could be selected to become condition-dependent owing to

this effect. Through this effect on growth, selection for condition-dependent selfing could therefore influ-

ence the evolution of traits that do not directly relate to mating as plant size plays a central role in many

aspects of a plant’s ecology, including its ability to competitively acquire resources or its attractiveness

to animal pollinators, dispersers and predators.

Irrespective of the particular trait, the evolution of condition dependence relies on the ability of organisms

to acquire information about their genetic background and adjust their strategy accordingly. We assumed

that organisms are able to sense their condition directly by letting the selfing rate be determined by a

gene regulatory network receiving individual condition as input. When individual condition is purely

genetically determined, it acts as a reliable indicator of individual genotype and so condition dependence

evolves readily from gene-regulatory interactions. Environment effects on condition hinder the evolu-

tion of condition dependence, because they obscure the relationship between condition and genotype,

which makes it a less reliable indicator and so weakens selection for condition dependence. However, no

amount of environmental fluctuations could entirely prevent condition-dependent selfing from evolving

in our simulations, which suggests that the evolution of condition dependence may occur as long as in-

dividual condition has some genetic basis and organisms are able to sense their condition. In addition to

environmental effects, the evolution of condition dependence could also be hindered if organisms do not

sense their condition directly and instead rely on imperfect phenotypic proxies. Reliance on such proxies

could also set up an evolutionary feedback between the evolution of the mating system and that of the

trait(s) used as proxy, which could for example include individual growth rate or any other measure of

metabolic activity.

Our findings point to a need for empirical studies relating plant traits to condition and mating strategy at

the individual level. Such data is currently lacking, in part because selfing rates are often measured at the
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level of the population and so can seldom be related to individual phenotype [5]. One exception to this

comes from studies of herkogamy (the spatial separation of female and male organs), which often show

that closer proximity between the two sexual functions leads to higher individual selfing rates (reviewed

in [75]). One possible way of looking for condition-dependent selfing empirically could therefore be to

relate the degree of herkogamy to condition at the individual level in species where it has been shown

to affect the selfing rate. According to our model, lower herkogamy and accordingly higher selfing rates

would be expected in higher condition individuals. Condition dependence for the selfing rate could also

be revealed by an experimental design where plants with diverse genetic backgrounds are grown under

controlled conditions in order to minimise environmental differences between individuals. One would

quantify their condition through phenotypic proxies (e.g., plant biomass [80]) and leave them to exchange

pollen. Individual selfing rates could then be estimated using the resulting seeds’ genotypes, and related

to proxies of condition. A positive relationship between these proxies and the selfing rate would then

be expected. Alternatively, one could indirectly quantify the amount of deleterious variation carried by

a plant, by measuring the performance of self-fertilised and outcrossed seeds produced via controlled

crosses on said plant (or one with the same genotype), in order to quantify inbreeding depression within

its progeny. In this setting, one would expect a negative relationship between the selfing rate of the parent

and the magnitude of inbreeding depression measured among its offspring.

The genetic escape mechanism that we highlight should also select for condition dependence in traits that

affect inbreeding in general – of which selfing is but an extreme case. Beyond hermaphroditic organisms,

our results might therefore have implications for the evolution of condition dependence in organisms with

separate sexes as well. In dioecious animals, this mechanism could for instance favour the evolution of

condition-dependent dispersal – whereby lower condition individuals would tend to be more dispersive –

or condition-dependent preference for mating with kin, in which case high condition individuals would be

more prone to mate with individuals related to them. Behavioural preference and avoidance of inbreeding

are both well-documented in animals [81], but the possibility that these preferences might vary between

individuals as a function of their condition has not been considered, be it in theory or empirically.

In conclusion, our analyses demonstrate that selection broadly favours condition-dependent inbreeding,

leading to a diverse array of mating strategies coexisting in populations. The consequences of this pre-

viously undescribed source of selection may be seen on many traits in partially selfing hermaphrodites

as well as in dioecious organisms, though the emergence of condition dependence may be constrained by

morphological and physiological trade-offs, and the strength of selection for condition dependence would

be diminished by strong environmental effects or reliance on imperfect phenotypic proxies. The question
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of how often condition-dependent inbreeding actually occurs in natural populations, and if so, through

which phenotypic basis, is open for empirical investigation.
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Appendix A

Analysis of the two-locus model

In this Appendix, we analyse the two-locus model described in Section 2 of the main text. We first study

the effect of a fixed relationship between condition and selfing on the condition locus (Section A.1), and

then consider the evolution of condition-dependent selfing (Section A.2).

A.1 Effect of condition-dependent selfing on the condition locus

A.1.1 General population genetic recursions

We consider a population fixed for an arbitrary selfing strategy α = (αAA, αAa, αaa). In this population,

we denote the frequency of genotype x1x2 (with x1, x2 ∈ {A, a}) at some arbitrary time t as qx1x2(t),

and by Mx(α, t) the frequency of allele x ∈ {A, a} in the outcross pollen pool. Accounting for mutation

among the gametes produced by each genotype, frequencies in the outcross pollen pool are given by

MA(α, t) = (1− µA) qAA(t)
φAA

φ(t)
+ qAa(t)

1− µA + µa

2

φAa

φ(t)
+ µa qaa(t)

φaa

φ(t)
,

Ma(α, t) = µA qAA(t)
φAA

φ(t)
+ qAa(t)

1− µa + µA

2

φAa

φ(t)
+ (1− µa) qaa(t)

φaa

φ(t)
,

(A1)

for allele A and a, respectively, where

φ(t) = φAAqAA(t) + φAaqAa(t) + φaaqaa(t) (A2)

is the mean condition in the population at time t. Using these notations, genotypic frequencies in the next

generation are given by

qAA(t+ 1) = qAA(t)
φAA

φ(t)
(1− µA) [αAA(1− µA) + (1− αAA)MA(α, t)]

+ qAa(t)
φAa

φ(t)

1− µA + µa

2

[
αAa

1− µA + µa

2
+ (1− αAa)MA(α, t)

]
+ qaa(t)µa

φaa

φ(t)
[αaaµa + (1− αaa)MA(α, t)] ,

(A3a)
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qAa(t+ 1) = qAA(t)
φAA

φ(t)

{
2µA(1− µA)αAA + (1− αAA)

[
(1− µA)Ma(α, t) + µAMA(α, t)

]}
+ 2qAa(t)

φAa

φ(t)

1− µA + µa

2

1− µa + µA

2

+ qaa(t)
φaa

φ(t)

{
2µa(1− µa)αaa + (1− αaa)

[
(1− µa)MA(α, t) + µaMa(α, t)

]}
,

(A3b)

and

qaa(t+ 1) = qAA(t)
φAA

φ(t)
µA [αAAµA + (1− αAA)Ma(α, t)]

+ qAa(t)
φAa

φ(t)

1− µa + µA

2

[
αAa

1− µa + µA

2
+ (1− αAa)Ma(α, t)

]
+ qaa(t)

φaa

φ(t)
(1− µa) [αaa(1− µa) + (1− αaa)Ma(α, t)] .

(A3c)

In each of the three equations in (A3), the three lines give the frequency of successful offspring of the

considered genotype produced by AA, Aa and aa mothers, respectively.

To understand how these were obtained, let us focus on eq. (A3c), which gives the frequency of wild-

type homozygotes aa in the next time step. Wild-type homozygote mothers AA contribute a proportion

qAA(t)×φAA/φ(t) of the ovules produced by the population, a fraction µA of which carry the deleterious

allele a. A fraction αAA of these ovules is then self-fertilised and give rise to aa seeds if they get fertilised

by a-carrying pollen, which occurs with probability µA. The remaining fraction 1 − αAA is fertilised

through outcrossing, in which case they are fertilised by a-carrying pollen with probability Ma(α, t).

Heterozygous mothersAa contribute a proportion qAa(t)×φAa/φ(t) of ovules, a fraction (1−µa+µA)/2

of which carry the deleterious allele a. These are self-fertilised in proportion αAa, in which case they

receive a-carrying pollen and give rise to a aa seed with probability (1−µa+µA)/2. Otherwise, they are

fertilised by outcrossing, and receive a-carrying pollen with probability Ma(α, t). Finally, deleterious

homozygote mothers aa contribute a proportion qaa(t)×φaa/φ(t) of ovules, a fraction 1− µa of which

carry the deleterious allele a. These get self-fertilised at rate αaa and receive a-carrying pollen with

probability 1 − µa, otherwise, they get cross-fertilised and receive a-carrying pollen with probability

Ma(α, t).

The equilibrium genotypic frequencies can be obtained from eq. (A3) by finding

q∗AA, q
∗
Aa and q∗aa such that qx1x2(t) = qx1x2(t+ 1) = q∗x1x2

for all x1, x2 ∈ {A, a}. (A4)

2



A more practical description. The description of population genetic dynamics in terms of genotypic

frequencies given above is the most natural to derive from a particular biological scenario, but is difficult to

work with in practice, especially when incorporating assumptions on the relative magnitude of parameters,

as we will come to below. A more practical description, which we will use from now on, can be obtained

from expressing genotypic frequencies as

qAA(t) = (1− p(t))2 + C(t)

qAa(t) = 2 [p(t)(1− p(t))− C(t)]

qaa(t) = p(t)2 + C(t),

(A5)

where

p(t) = qaa(t) +
qAa(t)

2
and C(t) = qaa(t)− p(t)2

denote the frequency of allele a and the excess in homozygotes relative to the Hardy-Weinberg expectation

at the condition locus at time t, respectively, and

∆p = p(t+ 1)− p(t) and ∆C = C(t+ 1)− C(t) (A6)

denote the change in these quantities over one generation, which is be readily obtained by rearranging

eq. (A3). With this description, an equilibrium is defined as

p∗, C∗ such that ∆p = ∆C = 0. (A7)

Weak variation in condition. Throughout our analyses, we will assume that the effect of the deleterious

allele a on condition is weak, s ∼ O (ϵ), and mutation at the condition locus is rare in both directions,

µx ∼ O
(
ϵ2
)
, so that µx ≪ s. To incorporate this assumption, our approach will rely in Taylor-expanding

the change in allelic frequency and excess homozygosity at the condition locus around ϵ = 0. In general,

this will take the form

K = K(0) + ϵ K(1) +
ϵ2

2
K(1) + ...+

ϵn

n!
K(n) +O

(
ϵn+1

)
, (A8a)

where

K(n) =
∂nK
∂ϵn

∣∣∣∣
ϵ=0

(A8b)

3



is the nth order perturbation of K with respect to ϵ, and K can be any differentiable quantity (e.g., ∆p

and ∆C here).

A.1.2 Linear relationship

The explicit solution to eq. (A7) cannot be obtained for an arbitrary selfing strategy α, as differences in

selfing rates between genotypes greatly complicate the dynamics. To gain analytical traction, we assume

that genotype-dependent selfing rates α = (αAA, αAa, αaa) follow a linear relationship. Specifically, we

assume that they are given by

α = (αAA, αAa, αaa) =

(
α0, α0 − hdα, α0 − dα

)
, (A9)

where dα determines the slope of the line on which αAA, αAa and αaa lie. The selfing rate increases

with condition when dα > 0 (positive condition dependence) and decreases with condition occurs when

dα < 0 (negative condition dependence). We assume that condition dependence is weak, dα ∼ O (ϵ), in

order to obtain analytical results, but numerical analyses show that the obtained approximation predicts

exact solutions under a broad parameter range (see Fig. 2B in the main text).

Our aim is to compute the equilibrium allelic frequency p∗ and excess homozygosity C∗ at the condition

locus to first order in ϵ. To do so, we expand the allelic frequency p(t) and excess in homozygotes C(t)

using eq. (A8) as

p(t) = p(0) + ϵ p(1) +
ϵ2

2
p(2) + ...+

ϵn

n!
p(n) +O

(
ϵn+1

)
(A10a)

and

C(t) = C(0) + ϵ C(1) +
ϵ2

2
C(2) + ...+

ϵn

n!
C(n) +O

(
ϵn+1

)
, (A10b)

where we dropped time t from perturbation terms for brevity. Similarly, the change in these variables

over one generation can be written as sums of perturbations to the nth order in ϵ, i.e.,

∆p = ∆p(0) + ϵ∆p(1) +
ϵ2

2
∆p(2) + ...+

ϵn

n!
∆p(n) +O

(
ϵn+1

)
(A10c)

and

∆C = ∆C(0) + ϵ∆C(1) +
ϵ2

2
∆C(2) + ...+

ϵn

n!
∆C(n) +O

(
ϵn+1

)
. (A10d)
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It follows from eq. (A7) that for a population to be at an equilibrium, we must have

∆p(n) = ∆C(n) = 0 (A11)

to all orders n ∈ {0, 1, ..., n} in ϵ. Below, we solve eq. (A11) to increasingly high orders to compute

perturbations terms in eq. (A10).

Injecting eq. (A10) into eq. (A6) and expanding it to order zero in ϵ, we find that the change in frequency

and excess homozygosity at the condition locus are

∆p(0) = 0 and ∆C(0) =
1

2

[
α0p(0)(1− p(0))− C(0)(2− α0)

]
(A12)

to order zero. The change in allelic frequency is zero because all the processes that affect it, namely muta-

tion, fecundity selection and condition dependence are neglected to this order, and so allelic frequencies

will not change from one generation to the next in the absence of drift. The change in mean homozygosity

to order zero, meanwhile, yields

∆C(0) = 0 ⇒ C∗
(0) = Fp(0)(1− p(0)) (A13)

at equilibrium, with

F =
α0

2− α0
. (A14)

Eq. (A13) corresponds to the expected excess homozygosity at a diallelic neutral locus under partial

selfing in the absence of condition dependence (which is neglected to order zero).

The first-order perturbation of the change in frequency at the condition locus is given by

∆p(1) = −
(
s+

dα
2

)[
F + (1− F )

(
p(0) + h

(
1− 2p(0)

))]
p(0)

(
1− p(0)

)
. (A15)

The term in square brackets is strictly positive for 0 ⩽ h ⩽ 1, so that there is two possible equilibria

that satisfy eq. (A11), either p∗(0) = 0 or p∗(0) = 1. Which of the two is attained is determined by the

relative strength of selection against the deleterious allele and condition dependence for the selfing rate.

Under positive condition dependence (dα > 0), eq. (A15) is always negative, leading to p∗(0) = 0. This

indicates that the deleterious allele always remains rare in this situation, as higher order terms will only

produce small deviations close to p∗(0) = 0. Under negative condition dependence (dα < 0), on the other

hand, eq. (A15) can become positive and lead to p∗(0) = 1, indicating that the deleterious allele attains a

5



frequency close to one at equilibrium. Specifically, we have

p∗(0) =


1 if dα < −2s

0 otherwise.
(A16)

This result can be understood as follows. Fecundity selection always disfavours the deleterious allele a,

but condition dependence generates an association between selfing rate and genotype at the condition

locus, so that alleles at this locus experience different selfing rates and so benefit differentially from the

transmission advantage of self-fertilisation [4]. Under positive condition dependence (dα > 0), the wild-

type allele A already favoured by fecundity selection enjoys an additional transmission advantage, which

further acts against allele a (eq. A15 becomes more negative). Conversely, negative condition dependence

(dα < 0) counteracts fecundity selection by granting a transmission advantage to the deleterious allele a

and offsets it completely when dα < −2s, leading to the near fixation of allele a. We calculate subsequent

terms separately for the p∗(0) = 0 and p∗(0) = 1 cases.

When p∗(0) = 0, the first-order perturbation of the change in homozygosity, ∆C(1), is given by

∆C(1) =
1

1 + F

(
Fp(1) − C(1)

)
, (A17)

so that at equilibrium

∆C(1) = 0 ⇒ C∗
(1) = Fp∗(1), (A18)

which again corresponds to the expected excess in homozygotes at a diallelic locus under neutrality (with

terms in p∗(1)
2 neglected because they are of order ϵ2). When p∗(0) = 1, on the other hand, we have

∆C(1) = − 1

1 + F

(
Fp(1) + C(1)

)
, (A19)

which gives

C∗
(1) = −Fp∗(1). (A20)

The minus sign in eq. (A20) compensates for the fact that p(0) = 1 in this case, so that the first-order

perturbation of allelic frequency p∗(1) must be negative or null (see below).

The second-order perturbation of the change in frequency ∆p(2)/2 with p∗(0) = 0 (dα > −2s) is given by

∆p(2)

2
= µA −

(
s+

dα
2

)[
h (1− F ) + F

]
p(1), (A21)
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leading to

p∗ = p∗(1) =
µA(

s+
dα
2

)[
h (1− F ) + F

] +O
(
ϵ2
)

and C∗ = Fp∗ +O
(
ϵ2
)

(A22)

at equilibrium. With p∗(0) = 1 (dα < −2s), we find

∆p(2)

2
= −µa +

(
s+

dα
2

)[
1− h(1− F )

]
p(1), (A23)

yielding
∆p(2)

2
= 0 ⇒ p∗(1) =

µa(
s+

dα
2

)[
1− h(1− F )

] , (A24)

which is negative because dα < −2s, and so

p∗ = 1 +
µa(

s+
dα
2

)[
1− h(1− F )

] +O
(
ϵ2
)

and C∗ = F (1− p∗) +O
(
ϵ2
)
. (A25)

Eqs. (A22) and (A25) correspond to eq. (2) in the main text.

A.1.3 Heterozygote advantage

Polymorphism is always maintained at a balance between mutation and selection in the linear case above,

and so would collapse in the absence of recurrent mutation, but we find in numerical analyses that the two

alleles at the condition locus can be maintained at an intermediate frequency in the absence of mutation

for arbitrary selfing strategies where heterozygotes self-fertilise at a higher rate than homozygotes, i.e.,

when

αAa > αAA, αaa. (A26)

This is because such strategies generate a form of overdominance at the condition locus that leads to a

protected polymorphism. To show this analytically, we now assume that genotype-dependent selfing rates

α = (αAA, αAa, αaa) are given by

α =
(
α0, α0 + dα, α0

)
, (A27)
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so that homozygotes share the same selfing rate α0 and heterozygotes may deviate from this rate by an

amount dα. Heterozygotes have a higher selfing rate than homozygotes when dα > 0 and a lower selfing

rate when dα < 0. We make no assumption on the magnitude of dα here.

To order zero in ϵ, we find that the change in frequency and excess homozygosity at the condition locus

are given by

∆p(0) = −dα
2

(
1− 2p(0)

) (
C(0) − p(0)q(0)

)
, (A28a)

and

∆C(0) =
α0

2
p(0)q(0) −

(
1− α

2

)
C(0) +

(
1− 2p(0)

2

)2 {
1−

[
1 + dα

(
C(0) − p(0)q(0)

)]2} (A28b)

where q(0) = 1 − p(0). Solving for equilibrium (eq. A11), we find that this system has three equilibria,

either one of the alleles goes to fixation, i.e.,

p∗(0) = 0 or p∗(0) = 1, (A29)

in which case C∗
(0) = 0; or alleles are equally frequent,

p∗(0) =
1

2
and C∗

(0) =
F

4
(A30)

with F = α0/(2 − α0). To determine the stability of these equilibria, we compute the Jacobian matrix

J∗
(0),

J∗
(0) =


∂p′(0)

∂p(0)

∣∣∣∣∣
∗

∂p′(0)

∂C(0)

∣∣∣∣∣
∗

∂C ′
(0)

∂p(0)

∣∣∣∣∣
∗

∂C ′
(0)

∂C(0)

∣∣∣∣∣
∗

 , (A31)

where p′(0) = p(0)+∆p(0) and C ′
(0) = C(0)+∆C(0) denote allelic frequency and excess homozygosity in

the next time step, and the |∗ notation indicates that all derivatives are evaluated at an equilibrium of the

system (as given by eq. A29 and A30). An equilibrium point is considered to be stable when the leading

eigenvalue of J∗
(0), λJ∗

(0)
, has a real part strictly smaller than one in absolute value, i.e.,

|λJ∗
(0)
| < 1. (A32)

Checking for Condition (A32) for each of the three equilibria above, we can distinguish two cases. When

8



heterozygotes self-fertilise at a higher rate than homozygotes (dα > 0), the equilibrium where both al-

leles are maintained at equal frequency is the only stable one (eq. A30), indicating that selection favours

their coexistence. When dα < 0, on the other hand, this equilibrium is unstable and both p∗(0) = 0 and

p∗(0) = 1 are stable, meaning that the population will either fix allele A or allele a depending on initial

conditions. These results can be understood by realising that the average selfing rate associated with an

allele becomes strongly frequency-dependent when the rate of heterozygotes differs from homozygotes,

because the rarer allele is more likely to be found in heterozygous state. When dα > 0, the rarer al-

lele enjoys a transmission advantage over the other, leading to negative frequency-dependence and the

maintenance of polymorphism. Conversely, dα < 0 leads to heterozygote disadvantage and so positive

frequency-dependence and the fixation of the most frequent allele. These results neglect the effect of

mutation and fecundity selection against a, but since these are small, they are only going to produce small

deviations around the equilibria identified here.

A.2 Evolution of condition-dependent selfing

We now investigate the evolution of condition-dependent selfing. To do this, we assume that mutations

at the modifier locus are rare, occur independently for each of the three traits and have weak, unbiased

phenotypic effects. Under these assumptions, evolution at the modifier proceeds gradually, and evolu-

tionary dynamics can be inferred from an invasion analysis [2, 3, 5, 9]. We describe our general approach

and introduce necessary notations in Section A.2.1. We then solve special cases explicitly in Sections

A.2.2-A.2.4, and present complementary numerical analyses in Section A.2.5.

A.2.1 Analytical method

We consider the invasion of a rare mutant allele m encoding a strategy αm = (αm
AA, α

m
Aa, α

m
aa) in a

population otherwise fixed with allele M, which encodes a strategy α = (αAA, αAa, αaa). The dynamics

of the mutant sub-population can be modelled by the recursion

nt+1 = W(αm,α) · nt, (A33)

where nt = (ni,t)1⩽i⩽8 is a vector that gives the number of mutant individuals in each of the eight

possible genotypic classes in the sub-population at time t (Table 1), and W(αm,α) is an 8 × 8 matrix

of which element wij(αm,α) gives the expected number of successfully established mutant offspring of

9



class i produced by a focal mutant of class j. We hereafter refer to W(αm,α) as the invasion matrix.

Class Genotype
1 AM / Am
2 AM / am
3 aM / Am
4 aM / am
5 Am / Am
6 Am / am
7 am / Am
8 am / am

Table 1: Class number and
genotype as used throughout
the analysis. For each geno-
type, the maternally inher-
ited haplotype is given first,
followed by the paternal hap-
lotype after the slash sym-
bol.

To facilitate writing the elements of the invasion matrix W(αm,α), let us first denote as F ∗
x (α) and

M∗
x(α) the relative number of female and male gametes available for outcrossing carrying allele x ∈

{A, a}, respectively, produced by the resident population at its genetic and ecological equilibrium. These

variables are given by

F ∗
A(α) = (1− µA) q

∗
AA

φAA

φ∗ (1− αAA) + q∗Aa

1− µA + µa

2

φAa

φ∗ (1− αAa) + µa q
∗
aa

φaa

φ∗ (1− αaa),

F ∗
a (α) = µA q∗AA

φAA

φ∗ (1− αAA) + q∗Aa

1− µa + µA

2

φAa

φ∗ (1− αAa) + (1− µa) q
∗
aa

φaa

φ∗ (1− αaa)

(A34a)

and

M∗
A(α) = (1− µA) q

∗
AA

φAA

φ∗ + q∗Aa

1− µA + µa

2

φAa

φ∗ + µa q
∗
aa

φaa

φ∗ ,

M∗
a (α) = µA q∗AA

φAA

φ∗ + q∗Aa

1− µa + µA

2

φAa

φ∗ + (1− µa) q
∗
aa

φaa

φ∗

(A34b)

where q∗x1x2
is the equilibrium frequency of genotype x1x2 (with x1, x2 ∈ {A, a}) in the resident popu-

lation and

φ∗ = φAAq
∗
AA + φAaq

∗
Aa + φaaq

∗
aa (A35)

is the mean condition in the resident population. Further, we denote as αi the selfing rate and φi the

condition of a mutant of class i, and by G
(i)
xy (with x ∈ {A, a} and y ∈ {M,m}) the proportion of gametes

with haplotype xy among those produced by a mutant of class i. The expressions for G(i)
xy variables are

given in Table 2 (see associated caption for explanation).
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Invasion matrix. Using the above notations, the number of successful mutant offspring of class 1 to 8

produced by a focal mutant of class i are given by

wi(α,αm) =



φi

φ∗

[
2αiG

(i)
AMG

(i)
Am + (1− αi)M

∗
A(α)G

(i)
Am

]
+ F ∗

A(α)
φi

φ∗G
(i)
Am

φi

φ∗

[
2αiG

(i)
AMG

(i)
am + (1− αi)M

∗
A(α)G

(i)
am

]
+ F ∗

A(α)
φi

φ∗G
(i)
am

φi

φ∗

[
2αiG

(i)
AmG

(i)
aM + (1− αi)M

∗
a (α)G

(i)
Am

]
+ F ∗

a (α)
φi

φ∗G
(i)
Am

φi

φ∗

[
2αiG

(i)
amG

(i)
aM + (1− αi)M

∗
a (α)G

(i)
am

]
+ F ∗

a (α)
φi

φ∗G
(i)
am

φi

φ∗αiG
(i)
AmG

(i)
Am

φi

φ∗αiG
(i)
AmG

(i)
am

φi

φ∗αiG
(i)
AmG

(i)
am

φi

φ∗αiG
(i)
amG

(i)
am



, (A36)

which corresponds to the ith column of the invasion matrix W(αm,α), i.e.,

W(αm,α) =

(
wi(α,αm)

)
1⩽i⩽8

. (A37)

To understand how the elements in eq. (A36) were computed, let us focus on its first entry, which gives

the number of successfully recruited AM/Am offspring produced by a mutant of class i and is composed

of two terms. The first term gives the number of successful AM/Am offspring produced by the mutant

through its female function. It is proportional to the relative contribution of the mutant to the seed pool

through its female function, which is given by its relative condition φi/φ
∗. The mutant self-fertilises a

fraction αi of its ovules, producing a proportion 2G
(i)
AMG

(i)
Am of AM/Am zygotes. The remaining ovules

(1− αi) are fertilised by resident individuals, in which case an AM/Am zygote can only be produced if

the focal mutant contributes a Am haplotype (which it does with probability G
(i)
Am) and receives resident

pollen carrying haplotype AM, which occurs with probability M∗
A(α). The second term gives the num-

ber of successful AM/Am offspring produced by the mutant through its male function, i.e. through the

fertilisation of resident ovules. Similar to female function, a mutant of class i can only produce AM/Am

offspring through outcrossing if it fertilises resident ovules carrying haplotype AM. This term is there-
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fore proportional to the contribution of AM ovules to the pool of resident ovules available for outcrossing,

F ∗
A(α). The mutant fertilises part of these ovules in proportion to its relative condition φi/φ

∗ in which

case AM/Am offspring are formed when the mutant transmits haplotype Am, which occurs with proba-

bility G
(i)
Am.

Class i G
(i)
AM G

(i)
Am G

(i)
aM G

(i)
am

1
1− µA

2

1− µA

2

µA

2

µA

2

2
(1− r)(1− µA) + rµa

2

r(1− µA) + (1− r)µa

2

r(1− µa) + (1− r)µA

2

(1− r)(1− µa) + rµA

2

3
r(1− µA) + (1− r)µa

2

(1− r)(1− µA) + rµa

2

(1− r)(1− µA) + rµa

2

r(1− µa) + (1− r)µA

2

4
µa

2

µa

2

1− µa

2

1− µa

2

5 0 1− µA 0 µA

6 0
1− µA + µa

2
0

1− µa + µA

2

7 0
1− µA + µa

2
0

1− µa + µA

2

8 0 µa 0 1− µa

Table 2: Proportion of gametes carrying genotype xy, x ∈ {A, a}, y ∈ {M,m} among the gametes produced
by a mutant individual of class i ∈ {1, ..., 8}. These expressions assume that recombination occurs first, followed
by mutation at the condition locus. To understand how they were obtained, consider the gametes produced by
an individual of class 2, i.e., with genotype AM/am. Following recombination, such an individual will produce
haplotype AM, Am, aM and am in proportions (1 − r)/2, r/2, r/2 and (1 − r)/2, respectively. Alleles at the
condition locus then each mutate with probability µx, x ∈ {A, a}, so that haplotype AM for instance is produced
either from AM recombinant haplotypes that did not mutate, which occurs with probability (1− r)(1− µA)/2; or
from a aM that mutated, which occurs with probability rµa/2. Repeating this reasoning for each haplotype gives
the proportions in the table.

Selection gradient in a class-structured population. The invasion fitness ρ(αm,α) of a mutant αm

in a population fixed for α, from which the selection gradients on αAA, αAa and αaa can be computed,

is given by the leading eigenvalue of the invasion matrix W(αm,α) [2]. Unfortunately, this eigenvalue

cannot be computed explicitly and so cannot directly be used to characterise the evolution of condition-

dependent selfing. Under the assumption that mutations have weak phenotypic effects, however, the selec-

tion gradients s(α) = (sAA(α), sAa(α), saa(α)) on condition-dependent selfing rates can be obtained

as

sx1x2(α) = v◦(α) ·Dx1x2(α) · q◦(α), (A38)
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where q◦(α) =
(
q◦i (α)

)
1⩽i⩽8

is the right eigenvector of W◦(α) = W(α,α), the invasion matrix under

neutrality, normalised such that
8∑

i=1

q◦i (α) = 1,

which gives the asymptotic frequencies of classes in the population under neutrality; Dx1x2(α) is an

8× 8 matrix, the (i, j)-entry of which dx1x2
ij (α) is given by the derivative of the corresponding entry of

the invasion matrix W(αm,α) with respect to αm
x1x2

evaluated at the resident strategy, i.e.,

dx1x2
ij (α) =

∂wij(αm,α)

∂αm
x1x2

∣∣∣∣
αm=α

, (A39)

which measures the effect of a change in trait αx1x2 on the number of successful offspring of class i

produced by a focal mutant of class j; and v◦(α) =
(
v◦i (α)

)
1⩽i⩽8

is the left eigenvector of W◦(α) =

W(α,α), normalised such that

v◦(α) · q◦(α) = 1,

which gives the reproductive value of an individual of class i under neutrality, that is its long-term con-

tribution to population growth. Background for this decomposition can be found, e.g., in [11] or Chap.

11 in [10]. See also Section 3 in [2] for a review. In what follows, we use this decomposition to study the

evolution of condition-dependent selfing.

Weak variation in condition. Similar to our calculations under fixed condition-dependent selfing (Sec-

tion A.1), we assume that s ∼ O (ϵ) and µx ∼ O
(
ϵ2
)

in order to obtain analytical results. To incorporate

these assumptions, our approach will again rely on Taylor-expanding relevant quantities using eq. (A8).

Applying this method to the selection gradient on αx1x2 , we find that it can be expressed as

sx1x2(α) = v◦
(0) ·D

x1x2

(0) · q◦(0)

+ ϵ
(
v◦
(1) ·D

x1x2

(0) · q◦(0) + v◦
(0) ·D

x1x2

(1) · q◦(0) + v◦
(0) ·D

x1x2

(0) · q◦(1)
)

+
ϵ2

2

[
v◦
(2) ·D

x1x2

(0) · q◦(0) + v◦
(0) ·D

x1x2

(2) · q◦(0) + v◦
(0) ·D

x1x2

(0) · q◦(2)

+ 2
(
v◦
(1) ·D

x1x2

(1) · q◦(0) + v◦
(1) ·D

x1x2

(0) · q◦(1) + v◦
(0) ·D

x1x2

(1) · q◦(1)
)]

+O
(
ϵ3
)

(A40)

for x1, x2 ∈ {A, a}, where v◦
(k), D

x1x2

(k) and q◦(k), k ∈ {0, 1, ..., n} are kth order perturbations of v◦, the

vector of individual reproductive values under neutrality; of Dx1x2(α), the matrix of effects; and of q◦,
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the vector of asymptotic class frequencies under neutrality, respectively.

Our aim will be to compute the perturbation terms that appear in eq. (A40) to increasing order in ϵ, starting

with order zero (first line) and stopping at the first non-zero term (the leading order).

A.2.2 Complete outcrossing

Computing the selection gradients on genotype-specific selfing rates for an arbitrary strategyα is difficult.

We therefore start by investigating special cases. Here, we compute a leading order approximation for the

selection gradients on the selfing rates in a completely outcrossing population (αAA = αAa = αaa = 0).

We first solve for the genetic equilibrium reached by an outcrossing resident population and then compute

the selection gradients.

Resident equilibrium. To compute the genetic equilibrium in the resident population, we use the same

method as in Appendix A.1.2, i.e., we assume that s ∼ O (ϵ) and µx ∼ O
(
ϵ2
)
, and expand the allelic

frequency p(t) and excess in homozygotes C(t), and their change between generations around ϵ with

αAA = αAa = αaa = 0 (eqs. A10-A11).

We find that the change in allelic frequency and homozygosity are given by

∆p(0) = 0 and ∆C(0) = −C(0) (A41)

to zero-th order in ϵ. This indicates that in the absence of selection or mutation, the change frequency of

allele a is expected to be zero, so that the population will retain the same allelic frequency indefinitely in

the absence of drift, meanwhile the excess in homozygotes is expected to be zero in a strictly outcrossing

population at equilibrium, as we have

∆C(0) = 0 ⇔ C∗
(0) = 0. (A42)

To first order in ϵ, the changes in allelic frequency and excess in homozygotes are given by

∆p(1) = −s
[
p(0) + h

(
1− 2p(0)

)]
p(0)

(
1− p(0)

)
and ∆C(1) = −C(1), (A43)
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which at equilibrium yields

p∗(0) = 0 and C∗
(1) = 0. (A44)

Eq. (A43) reveals that selection against allele a always lowers its frequency in the population and drives

it to extinction in the absence of mutation – which does not feature in the change in allelic frequency to

first order in ϵ because µx ∼ O
(
ϵ2
)

– so that the equilibrium frequency of allele a to leading order in ϵ

is expected to be zero.

To second order in ϵ, we have

∆p(2) = 2
(
µA − shp(1)

)
and ∆C(2) = −C(2), (A45)

which gives

p∗(1) =
µA

sh
and C∗

(2) = 0 (A46)

at equilibrium. This corresponds to the classical result of [6] for µA ≪ s. The deleterious allele a is main-

tained at a balance between mutation and selection and the population is at Hardy-Weinberg equilibrium

among newborns owing to random mating.

Finally, to third order in ϵ,

∆p(3) = −3

(
shp(2) + 2(1− h)

µ2
A

sh2

)
, (A47)

which yields

p∗(2) = 2

(
1− 1

h

)(µA

sh

)2
. (A48)

Thus, when selection is weak and mutation is rare,

p∗ =
µA

sh

[
1 +

(
1− 1

h

)
µA

sh

]
+O

(
ϵ3
)

and C∗ = 0 +O
(
ϵ3
)

(A49)

under complete outcrossing.

Selection gradients to order zero. The right and left eigenvectors of the invasion matrix under neu-

trality W◦(α), q◦ and v◦, which give the asymptotic class frequencies and class-specific reproductive

values in the mutant population under neutrality, are defined as the solutions of

W◦(α) · q◦ = q◦ and v◦ ·W◦(α) = v◦, (A50)
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which must hold to all orders in ϵ. Thus, their zero-th order perturbations q◦(0) and v◦
(0) must satisfy

W◦
(0) · q

◦
(0) = q◦(0) and v◦

(0) ·W
◦
(0) = v◦

(0), (A51)

with constraints q◦(0) · 1 = 1 and v◦
(0) · q

◦
(0) = 1, and where W◦

(0) is the zero-th order perturbation of

W◦(α). Solving eq. (A51) for q◦(0) and v◦
(0), we obtain

q◦(0) = (1, 0, 0, 0, 0, 0, 0, 0) and v◦
(0) = (1, 1, 1, 1, 2, 2, 2, 2). (A52)

This indicates that to order zero in ϵ, the mutant population under neutrality is expected to be fixed for

alleleA at the condition locus (q◦1(0) = 1, which stems from the fact that p∗(0) = 0 and homozygotes for the

mutant allele at the modifier cannot be produced under complete outcrossing), and the reproductive value

of an individual homozygous for the mutant allele is exactly twice that of an heterozygous individual,

because it carries twice as many mutant copies.

The matrices of fitness effects to order zero, meanwhile, are given by

DAA
(0) =



0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

8
0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



, (A53a)
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DAa
(0) =



0 −r2

4
−(1− r)2

4
0 0 −1

2
−1

2
0

0 −r(1− r)

4
−r(1− r)

4
0 0 −1

2
−1

2
0

0
r2

4

(1− r)2

4
0 0 0 0 0

0
r(1− r)

4

r(1− r)

4
0 0 0 0 0

0
r2

8

(1− r)2

8
0 0

1

4

1

4
0

0
r(1− r)

8

r(1− r)

8
0 0

1

4

1

4
0

0
r(1− r)

8

r(1− r)

8
0 0

1

4

1

4
0

0
(1− r)2

8

r2

8
0 0

1

4

1

4
0



, (A53b)

and

Daa
(0) =



0 0 0 0 0 0 0 0

0 0 0 −1

4
0 0 0 −1

0 0 0 0 0 0 0 0

0 0 0
1

4
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0
1

8
0 0 0 1



. (A53c)

Inserting eqs. (A52) and (A53) into eq. (A40), we have

sAA(0) =
1

4
+O (ϵ) (A54)
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Selection on αAA therefore always favours an increase in the selfing rate of wild-type homozygotes in a

completely outcrossing, and lower order terms need not be considered for this genotype. The gradients

for heterozygotes and deleterious homozygotes, meanwhile, are given by

sAa(0) = saa(0) = 0 +O (ϵ) , (A55)

indicating that higher order terms must be computed.

Selection gradients to order ϵ. To first order in ϵ, eqs. (A50) become

W◦
(1) · q

◦
(0) +W◦

(0) · q
◦
(1) = q◦(1) and v◦

(0) ·W
◦
(1) + v◦

(1) ·W
◦
(0) = v◦

(1), (A56)

and the renormalisation constraints imposed upon q◦ and v◦ give

q◦(1) · 1 = 0 and v◦
(1) · q

◦
(0) + v◦

(0) · q
◦
(1) = 0 (A57)

for first order perturbations q◦(1) and v◦
(1). Solving eqs. (A56) and (A57) for q◦(1) and v◦

(1) yields

q◦(1) =
(
−2

µA

sh
,
µA

sh
,
µA

sh
, 0, 0, 0, 0, 0

)
, (A58a)

and

v◦
(1) =

(
0, −sh

r
, −2sh, −s

(
1 +

h

r

)
, 0, −sh

1 + 2r

r
, −sh

1 + 2r

r
,−2s

(
1 +

h

r

))
. (A58b)
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Meanwhile, the first-order perturbations of matrices DAa(α) and Daa(α), DAa
(1) and Daa

(1), are given by

DAa
(1) =

0
r
[
r(sh)2 + µA

]
4sh

(1− r)
[
(1− r)(sh)2 + µA

]
4sh

0 0
(sh)2 + µA

2sh

(sh)2 + µA

2sh
0

0
(1− r)

(
r(sh)2 + µA

)
4sh

r
[
(1− r)(sh)2 + µA

]
4sh

0 0
(sh)2 + µA

2sh

(sh)2 + µA

2sh
0

0 −
r
(
r(sh)2 + µA

)
4sh

−
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and

Daa
(1) =


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sh
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sh
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4
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sh
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. (A59b)
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Using eqs. (A58) and (A59), the selection gradient on αAa becomes

sAa(0) =
µA

2sh
+O

(
ϵ2
)

(A60)

to first order in ϵ, which shows that selection always favours an increase in the selfing rate of heterozygotes

under complete outcrossing; whereas the selection gradient on αaa becomes

saa(0) = 0 +O
(
ϵ2
)
, (A61)

indicating that higher order terms must be computed.

Selection gradients to order ϵ2. To compute the selection gradient on αaa to second order in ϵ, we first

remark that

Daa
(0) · q

◦
(0) = (0, 0, 0, 0, 0, 0, 0, 0), (A62)

which implies that

v◦
(2) ·D

aa
(0) · q

◦
(0) = 0

irrespective of the elements of v◦
(2), so that we need not compute it. The second-order matrix of effects

Daa
(2) is complicated, but can be found in the accompanying Mathematica notebook (available at 10.

5281/zenodo.18523420). Using this matrix, we have

v◦
(0) ·D

aa
(2) · q

◦
(0) = 0.

Using eqs. (A58- A59), we find that the selection gradient on αaa reduces to

saa(0) =
v◦
(0) ·D

aa
(0) · q

◦
(2)

2
+O

(
ϵ3
)
. (A63)

Thus, all that is left to do is to compute the second-order perturbation q◦(2). From eq. (A50), q◦(2) is the

solution of

W◦
(2) · q

◦
(0) +W◦

(0) · q
◦
(2) + 2W◦

(1) · q
◦
(1) = q◦(2), (A64)

subject to the constraint

q◦(2) · 1 = 0. (A65)
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Solving eq. (A64) for q◦(2) yields

q◦(2) =

(
−2
(µA

sh

)2 [
1− 2

h
+ 2

(
1− µa

µA

)]
, −2

h(µa − µA) + µA

µAh

(µA

sh

)2
,

− 2
h(µa − µA) + µA

µAh

(µA

sh

)2
, 2
(µA

sh

)2
, 0, 0, 0, 0

)
,

(A66)

and the selection gradient on αaa becomes

saa(0) =
1

4

(µA

sh

)2
+O

(
ϵ3
)
. (A67)

Summary. In this section, we have shown that selection gradients on genotype-specific selfing rates

under complete outcrossing are given by

s(0) =

(
1

4
× 1 +O (ϵ) ,

1

4
× 2

µA

sh
+O

(
ϵ2
)
,

1

4
×
(µA

sh

)2
+O

(
ϵ3
))

(A68)

to leading order (eqs. A54, A60 and A67). These can be shown to be proportional to the equilibrium

frequency of the corresponding genotype at the condition locus multiplied by a factor 1/4, i.e.,

sx1x2 (0) =
q∗x1x2

4
, (A69)

x1, x2 ∈ {A, a} to leading order.

A.2.3 Complete selfing

Here, we compute a leading order approximation for the selection gradients on the selfing rates in a fully

selfing population (αAA = αAa = αaa = 1). Similar to the previous section, we first solve for the genetic

equilibrium reached by the resident population and then compute the selection gradients.

Resident equilibrium. Using the same decomposition as above (eq. A10), we find that the change in

frequency and in excess homozygosity at the condition locus are given by

∆p(0) = 0 and ∆C(0) =
1

2

[
p(0)

(
1− p(0)

)
− C(0)

]
(A70)
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to order zero in ϵ. Similar to the complete outcrossing case, the change in frequency at the condition

locus is null, because the effects of selection and mutation are both neglected to order zero. Meanwhile,

we find that the equilibrium value of C(0) is simply given by

∆C(0) = 0 ⇔ C∗
(0) = p∗(0)

(
1− p∗(0)

)
. (A71)

To first order in ϵ, selection effects appear and we obtain

∆p(1) = −sp(0)
(
1− p(0)

)
and ∆C(1) =

1

2

(
p(1) − C(1)

)
, (A72)

which yields

p∗(0) = 0 ⇒ C∗
(0) = 0, (A73)

and

C∗
(1) = p∗(1) (A74)

at equilibrium. Down to order ϵ2, we then find that the change in frequency and excess homozygosity at

the condition locus read

∆p(2) = 2
(
µA − sp(1)

)
and ∆C(2) =

1

2

[
p(2) − C(2) − 2µA

(
2 +

µA

s2

)]
, (A75)

so that at equilibrium

p∗(1) =
µA

s
⇒ C∗

(1) =
µA

s
, and C∗

(2) = p(2) − 2µA

(
2 +

µA

s2

)
. (A76)

Finally, the third order perturbation of ∆p is given by

∆p(3) = −3sp(2) + 6µA

[
2s(1− h)− µa

s

]
, (A77)

giving

p∗(2) = 2µA

[
2(1− h)− µa

s2

]
and C∗

(2) = −2µA

(
2h+

µA + µa

s2

)
(A78)

at equilibrium. Thus, when selection is weak and mutations are rare,

p∗ =
µA

s

(
1− µa

s

)
+2(1−h)µA+O

(
ϵ3
)

and C∗ =
µA

s

(
1− µA + µa

s

)
−2hµA+O

(
ϵ3
)

(A79)

under complete selfing.
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Class reproductive values and the basis to condition dependence. Before turning out attention to se-

lection gradients to order zero, let us first compute the zero-th order perturbations of asymptotic class fre-

quencies q◦ and reproductive values v◦ under neutrality, v◦
(0) and q◦(0), which we do by solving eq. (A51)

with αAA = αAa = αaa = 1. This yields

q◦(0) =
(
0, 0, 0, 0, 1, 0, 0, 0

)
(A80a)

and

v◦
(0) =

(
1

2
,

r

1 + 2r
,

1

2(1 + 2r)
, 0, 1,

1

2
,
1

2
, 0

)
. (A80b)

Eq. (A80a) shows that a fully selfing resident population would be fixed for allele A to leading order,

and any neutral mutant appearing at the selfing modifier would be exclusively found in homozygous state

within the mutant sub-population.

It is interesting to compare the expression for v◦
(0) obtained here (eq. A80b) with the one we found in the

complete outcrossing case (eq. A52). Under complete outcrossing, we found that all genotypic classes

had a positive reproductive value to zero-th order, with classes that are homozygous for the mutant al-

lele at the modifier having a reproductive value exactly twice that of heterozygous classes, because they

transmit twice as many mutant copies under complete outcrossing. In contrast, eq. (A80) reveals that the

zero-th order reproductive values of deleterious homozygote classes (classes 4 and 8) is zero under com-

plete selfing. This is because in the absence of outcrossing, heterozygotes at the condition locus are very

rare at equilibrium (indeed they only occur due to recurrent mutation) and homozygotes only produce

descendants with the same genotype as them at the condition locus, so that wild-type and deleterious

homozygotes effectively form independent, competing lineages. In such a setup, the contribution of dele-

terious homozygotes to the long-term fate of the population will be zero to leading order, because they

suffer from a fecundity disadvantage and so will always be outcompeted by wild-type homozygotes.

More broadly, this means that any mutant allele found in linkage with the deleterious allele will asymptot-

ically be lost unless it can recombine onto a wild-type background before being “trapped” in a deleterious

homozygote. This is illustrated by the reproductive values of classes heterozygous at the condition locus.

Those classes that are heterozygous at the condition locus but homozygote for the mutant at the selfing

modifier (classes 6 and 7) have a reproductive value exactly half that of a double homozygote carrying

the wild-type (class 5), because half of their mutant copies will inevitably be associated with the deleteri-

ous allele and so make no asymptotic contribution to the future population. Meanwhile, the reproductive

values of classes that are heterozygous at both loci (classes 2 and 3) depend on the recombination rate.
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Class 2, which corresponds to genotype AM/am, carries a mutant allele at the modifier in linkage with

the deleterious allele. Its long-term contribution to the mutant population is thus zero unless recombi-

nation allows it to produce Am haplotypes. As a result, its reproductive value is zero when r = 0 and

increases with r. Conversely, class 3 individuals, which carry genotype Am/aM, see their reproductive

value maximised for r = 0 and decrease with r because their mutant copy is already on the wild-type

background. This deleterious background trap generates selection to escape it, which forms the basis to

the evolution of condition-dependent self-fertilisation, as we will see below.

Selection gradients to order zero. We now compute selection gradients to order zero. The matrices

of effects are identical to the complete outcrossing case to order zero, so using in eq. (A53), we find

sAA (13) =
1

2
+O (ϵ) , (A81)

meaning that selection will always favour wild-type homozygotes to remain fully selfing when the rest of

the population is fully selfing as well, and

sAa (13) = saa (13) = 0 +O (ϵ) , (A82)

so that higher order terms must be computed for other genotypes.

Selection gradients to order ϵ. First of all, we note that

Daa
(0) · q

◦
(0) = DAa

(0) · q
◦
(0) = 0, (A83)

which implies that we need not compute the first order perturbation of reproductive values v◦
(1) for now.

To obtain the first order perturbation of class frequencies q◦(1), we solve eqs. (A56-A57) with αAA =

αAa = αaa = 1, which yields

q◦(1) =
(
0, 0, 0, 0, −µA

s
, 0, 0,

µA

s

)
. (A84)
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Meanwhile, the matrices of effects differ from the complete outcrossing case to first order in ϵ and are

given by

DAa
(1) =


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and

Daa
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0 0 0 0 0 0 0 0

0 0 0
1

4

(
s+

µA

s

)
0 0 0 s+

µA

s

0 0 0 0 0 0 0 0

0 0 0 −1

4

(
s+

µA

s

)
0 0 0 −µA

s

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −s
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. (A85b)
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Using eqs. (A83-A85), the selection gradients on αAa and αaa to first order in ϵ are therefore given by

sAa (13) = 0 +O
(
ϵ2
)

and saa (13) = − r

1 + 2r

µA

s
+O

(
ϵ2
)

(A86)

Eq. (A86) reveals that the selection gradient on αAa is zero to first order in ϵ, so that higher order terms

must be computed. This is because the frequency of heterozygotes is of the order of the mutation rate

under complete selfing, which is of order ϵ2. As for the selection gradient on αaa, eq. (A86) shows that

it is negative to leading order, indicating that selection favours deleterious homozygotes to reduce their

selfing rate when the rest of the population is fully selfing. To understand this result, one must think from

the point of view of an allele at the selfing modifier, keeping in mind that alleles linked to the deleterious

allele at the condition locus are asymptotically lost. For such an allele, complete selfing in deleterious

homozygotes ‘traps’ it onto a deleterious background and so dooms it to extinction, whereas outcrossing

gives it a chance at escaping the trap by mating with wild-type individuals and recombining. Accordingly,

the gradient is zero when there is no recombination (r = 0) as outcrossing then no longer constitutes a

viable escape route, and increases with r.

Selection gradients to order ϵ2. To compute second order terms in ϵ (eq. A40), we first note that

DAa
(0) · q

◦
(0) = DAa

(1) · q
◦
(0) = DAa

(2) · q
◦
(0) = 0, (A87)

as we show in the accompanying Mathematica notebook, so that we need not compute first and second

order perturbations of v◦, v◦
(1) and v◦

(2). We next compute the second order perturbation of q◦, q◦(2) by

solving eqs. (A64-A65), which yields

q◦(2) =
(
0, 0, 0, 0, 2µA

(µA

s2
− 2(2− h)

)
, 4µA, 4µA, −2µA

(µA

s2
+ 2h

))
(A88)

so that the selection gradient on αAa is given by

sAa (13) =
µA

1 + 2r
+O

(
ϵ3
)

(A89)

to leading order, demonstrating that selection favours complete selfing in heterozygotes.
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A.2.4 Pre-existing positive condition dependence (αaa < αAa < αAA)

Section A.2.3 shows that selection favours a decrease in the selfing rate in deleterious homozygotes as

an escape from the trap that constitutes linkage to the deleterious allele under complete selfing. But how

much should the selfing rate of these homozygotes be reduced, and does this reduction eventually drive a

change in the direction of selection on the selfing rate of other genotypes?

In this section, we consider the evolution of condition-dependent selfing under the looser assumption that

αaa < αAa < αAA, which is a situation likely to be observed. Indeed, section A.2.2 demonstrates that

selection favours an increase in all three genotype-specific selfing rates from complete outcrossing, but

the strength of selection is proportional to the frequency of the three genotypes at the condition locus,

and so

saa(0) ≪ sAa(0) ≪ sAA(0).

This indicates that alleles increasing αAA are much more likely to fix than alleles increasing αAa, which

are themselves much more likely to fix than alleles increasing αaa. Assuming the mutational input is

identical and independent for all three traits, it follows that the selfing rate of wild-type homozygotes

should increase much faster – in expectation – than that of heterozygotes, which in turn should increase

much faster than that of deleterious homozygotes. That is, in a large population with rare mutations of

small effect, we are likely to see

αaa < αAa < αAA, (A90)

at least initially.

Selection on the selfing rate of wild-type homozygotes, αAA. To order zero in ϵ, the change in allelic

frequency∆p(0) and in homozygosity∆C(0) at the condition locus depend on theα in a complicated way,

so we refrain from giving them here (but they are available in the Mathematica notebook accompanying

this Appendix; 10.5281/zenodo.18523420). Solving for equilibrium (eq. A7), we find that

p∗(0) = C∗
(0) = 0, (A91)

so long as eq. (A90) holds. This is because, even in the absence of mutation or fecundity selection, allele

A enjoys a transmission advantage relative to allele a here, as it is found in genotypes self-fertilising at

a higher rate on average, and so displaces allele a competitively. Using eq. (A91), we may compute the
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zero-th order perturbation of q◦ and v◦, q◦(0) and v◦
(0), as the solutions of

W◦
(0) · q

◦
(0) = q◦(0) and v◦

(0) ·W
◦
(0) = v◦

(0), (A92)

with constraints q◦(0) · 13 = 1 and v◦
(0) · q

◦
(0) = 1. These solutions are given in the accompanying

Mathematica notebook. Using the matrix of effects DAA
(0) (which is identical to eq. (A53a)), we find that

the selection gradient on αAA reduces to

sAA(α) =
1

2(2− αAA)
, (A93)

which depends only on αAA and is strictly positive. This shows that wild-type homozygotes will evolve

a selfing rate αAA → 1 irrespective of the selfing rates at other genotypes (provided that eq. A90 holds).

We next compute selection gradients on αAa and αaa under the assumption that αAA = 1.

Selection on the selfing rate of heterozygotes, αAa. Using the same approach as in sections A.2.2

and A.2.3 (eqs. A10-A49; see accompanying Mathematica notebook for the detailed approach), we find

that the equilibrium allelic frequency and homozygosity in the resident population are given by

p∗ =
2µA [2(1− αaa) + αAa]

(2− αAa)(1− αaa)
+O

(
ϵ3
)

and C∗ =
2µAαAa

(2− αAa)(1− αaa)
+O

(
ϵ3
)

(A94)

to second order in ϵ. These highlight the effect of the transmission advantage on genetic dynamics at the

condition locus. The higher αaa and αAa, the lower the transmission advantage enjoyed by allele A over

allele a, and the equilibrium frequency of allele a increases. In the absence of selfing in heterozygotes

(αAa = 0), there is no excess homozygosity in the population (C∗ = 0) to leading order, because there is

then no way for a deleterious allele a arising through mutation to be transmitted in homozygous state.

After computing perturbations of q◦ and v◦ using the same approach as in sections A.2.2 and A.2.3

(see Mathematica notebook), we find that the selection gradient on the selfing rate of heterozygotes αAa

reduces to

sAa(α) =
µA

2(2− αAa)2

[
3 +

2r(1− r)αAa

2− αAa

(
1− 2r(1− r)

)]+O
(
ϵ3
)
, (A95)

which is strictly positive and does not depend on αaa. Thus, selection favours the evolution of complete

selfing in heterozygotes (αAa → 1), similar to wild-type homozygotes.
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Selection on the selfing rate of deleterious homozygotes, αaa. To obtain the selection gradient on

αaa, we may now assume that αAa = 1. Terms of order ϵ3 must be computed, as all lower order terms

are zero. However, we show in the accompanying Mathematica notebook that

v◦
(0) ·D

aa
(0) = Daa

(0) · q
◦
(0) = Daa

(3) · q
◦
(0) = (0, 0, 0, 0, 0, 0, 0, 0), (A96)

which implies that all terms involving third order perturbations will be zero. In fact, we find that the

selection gradient on αaa simplifies to

saa(α) =
v◦
(1) ·D

aa
(0) · q

◦
(2)

2
+O

(
ϵ4
)

= −µA
s

(1− αaa)2
4r

1 + 4r

[
1− r(1− r)(1− αaa)

[1 + 2r(1− r)](2− αaa)

]
+O

(
ϵ4
) (A97)

which is strictly negative. Thus, although selection initially favours an increase in the selfing rate for

all genotypes, deleterious homozygotes will always be selected towards a selfing rate of zero (αaa → 0)

once the selfing rate of other genotypes is sufficiently high. In other words, selection favours the evolution

of condition-dependent selfing, where high-condition individuals are completely self-fertilising and low-

condition individuals are fully outcrossing.

A.2.5 Numerical analyses

To complement our analytical results, we investigated the evolution of condition-dependent selfing for an

arbitrary initial relationship between αAA, αAa and αaa with numerical analyses in Mathematica. We

used two different approaches, which we describe below.

Iteration of evolutionary dynamics. In the first approach, we assume that the population is initially

fixed for an arbitrary selfing strategy α0 = (α0
AA, α

0
Aa, α

0
aa) and study how evolutionary dynamics pro-

ceed from there as follows. At any time step n, we start by determining the genetic equilibrium reached by

a resident population expressing strategy αn = (αn
AA, α

n
Aa, α

n
aa), which we do by iterating the dynamics

of genotypic frequencies qt = (qAA(t), qAa(t), qaa(t)) given by eq. A3 until an equilibrium is reached,

i.e.,

13 · (qt+1 − qt)
2 < ϵq (A98)

where ϵq > 0 is a small tolerance threshold. We then compute the selection gradient on the three traits at

this equilibrium, s(αn) =
(
sAA (αn) , sAa (αn) , saa (αn)

)
using eq. (A38). The trait values expressed
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Figure S1: Evolution of condition-dependent selfing in the two locus model as a function of time (algorithm
iterations) from initial negative condition dependence, α = (0.1, 0.5, 0.9). Parameters used: µA = µa = 10−3,
s = 0.05, h = 0.25, r = 0.5.

in the population in the next time step are then given by

αn+1 = αn +∆α s(αn), (A99)

where ∆α > 0 is a small phenotypic deviation and elements of αn+1 are clipped to remain in the [0, 1]-

interval. This algorithm is repeated until the change in trait between two time steps is sufficiently small,

i.e.,

13 · (αn+1 −αn)
2 < ϵα, (A100)

where ϵα > 0 is a small tolerance threshold. Figure S1 illustrates the dynamics obtained using this

approach.

Gradient interpolation. The approach given above can be greedy in computation time, as it is only

valid for small phenotypic deviations and the selection gradients can be weak in some regions, leading

to very small phenotypic changes from one iteration to the next. One way to circumvent this issue is

to calculate the gradient for evenly spaced points in the [0, 1]3 cube in which selfing strategies α =

(αAA, αAa, αaa) are defined. For each point, we compute the equilibrium genotypic values in the resident

population using eq. (A3) and then compute the selection gradient using eq. (A38), as above. The output
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A B C

Figure S2: Effect of back-mutation on the evolution of condition-dependent selfing under low recombination rates.
Plots give the value of the selection gradient on the selfing rate of deleterious homozygotes in a fully selfing popu-
lation. Shades of blue indicate negative values, where condition dependence is favoured; shades of green indicate
green values, where it is not. The dashed line indicates where the gradient changes sign. condition dependence
is favoured for most of the parameter space, except when back-mutation is frequent and recombination very low.
Parameters used: s = 0.01, h = 0.25.

of these calculations is stored to a file (see Mathematica notebook for technical details), and can be used to

interpolate the selection gradient onα in the entire phenotypic space. Given this interpolated gradient, we

can then apply standard gradient descent methods to find the equilibrium strategy α∗ = (α∗
AA, α

∗
Aa, α

∗
aa)

favoured by selection.

Evolution of condition dependence and the effect of back-mutation. We used numerical analyses

to investigate the evolution of condition-dependent selfing over a broad range of parameter values and

found that a form of positive condition dependence where wild-type homozygotes and heterozygotes

self-fertilise fully while deleterious homozygotes are purely outcrossing, i.e.,

α∗ = (α∗
AA, α

∗
Aa, α

∗
aa) = (1, 1, 0) (A101)

was favoured in almost all cases. However, we found that low recombination rates can sometimes prevent

the evolution of condition dependence and lead to a pure selfing strategy instead (α∗ = 13) because the

benefits of outcrossing are low in this case, sufficiently so that the benefits reaped from self-fertilising

when wild-type alleles are produced through back-mutation are larger. This is illustrated by the fact that

selection favours the evolution of condition dependence for all r ̸= 0 when there is no back-mutation

(µa = 0), as can be seen from Fig. S2.
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Appendix B

Multilocus simulations

In this Appendix, we describe the simulation program and its extensions. The description given in this

section focuses on the biological processes included in the simulation program. The program is coded in

C++20 and available at 10.5281/zenodo.18523420. We also provide additional results for parameter

values not shown in the main.

B.1 The baseline program

The program simulates a population of N individuals, where each of them is characterised by its diploid

genotype at L condition loci and at ng network loci involved in a gene regulatory network that determines

their selfing rate.

Condition. Condition loci are assumed to be diallelic, with a wild-type allele Aℓ and a deleterious

allele aℓ at each locus l ∈ {1, . . . , L}. These loci are assumed to be unlinked meaning that they all

recombine with probability 1/2 during meiosis, and each allele mutates with probability µAℓ
= µaℓ = µ

during gametogenesis, in which case they change state (i.e., the wild-type becomes a deleterious allele

or the deleterious allele becomes wild-type). The deleterious allele at each locus reduces its bearer’s

condition by a proportion swhen homozygous and expresses proportionally to its dominance coefficient h

in heterozygotes. Condition loci act multiplicatively, so that the condition of an individual i heterozygous

at n(i)
het loci and homozygous for the deleterious allele at n(i)

hom loci is given by

φi = (1− sh)n
(i)
het × (1− s)n

(i)
hom . (B1)

Selfing rate. The gene regulatory network is composed of ng loci and is inspired from the Wagner

model [12]. Each locus k ∈ {1, ..., ng} contains a protein-coding gene that is expressed as the individual

develops into an adult and contributes to determining its selfing rate. The level of expression of each

gene at developmental time step t ∈ {0, ... , T} in individual i, which we denote as S
(i)
k (t) ∈ R, is

influenced by the combined action of individual conditionφi, which acts as an external cue to the network,
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and regulatory interactions within the network (including self-regulation). Specifically, we assume that

each locus additionally carries ng cis-regulatory sequences on which the gene products of the ng genes

involved in the network may bind to up- or down-regulate the gene expression at locus k. Each locus k is

thus characterised by five attributes, an input weight u(i)k ∈ R, which measures how much the expression

of locus k is directly influenced by condition; a slope a
(i)
k ∈ R and a bias b(i)k ∈ R, which determine the

shape of the response of locus k to condition and regulation; a vector of regulatory weights y(i)
k ∈ Rng ,

the mth element of which y
(i)
k,m gives the regulatory effect of locus m on the expression of locus k; and

an output weight v(i)k which measures the final contribution of locus k to the phenotype. Alleles at each

locus are additive, so that the attributes of locus k in a diploid individual carrying alleles k1 and k2 at this

locus are given by the average of the two alleles, i.e.,

x
(i)
k =

xk1 + xk2
2

for x ∈ {u, a, b,y, v}. Each allele mutates with probability µg during meiosis, in which case a normally

distributed value with mean zero and standard deviation σg is added to each of its attributes.

At the beginning of development (t = 0), that is before any regulatory interaction, the level of expression

of locus k is determined by its sensitivity to individual condition, i.e.,

S
(i)
k (0) = u

(i)
k φi. (B2)

Then, given expression levels Si(t) =
(
S
(i)
k (t)

)
1⩽k⩽ng

at developmental time t, the expression level of

locus k at t+ 1 is given by

S
(i)
k (t+ 1) =

2

1 + exp
[
−a

(i)
k

(
Si(t) · y(i)

k + u
(i)
k φi − b

(i)
k

)] − 1. (B3)

The recursion given in eq. (B3) is iterated until expression levels reach a steady stateS∗
i =

(
S
(i)
k∗
)
1⩽k⩽ng

,

defined as

S∗
i = Si(t) = Si(t+ 1) such that

1

ng

ng∑
k=1

(
S
(i)
k (t+ 1)− S

(i)
k (t)

)2

< ϵg, (B4)

where 0 < ϵg ≪ 1 is a small tolerance threshold, or the maximal development time T is reached. Those

individuals that fail to converge to steady expression levels as defined by eq. (B4) within T iterations are

assumed to be sterile owing to developmental instability [12]. Otherwise, the selfing rate expressed by
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the individual is given by

αi =


0 if vi · S∗

i < 0,

vi · S∗
i if 0 ⩽ vi · S∗

i ⩽ 1,

1 if vi · S∗
i > 1,

(B5)

where vi =
(
v
(i)
k

)
1⩽k⩽ng

collects the output weights of the ng loci involved in the network. Allowing the

dot product vi ·S∗
i to vacate the [0, 1]-interval in which the selfing rate is defined prevents the occurrence

of directional mutational bias due to boundary effects.

Initialisation. The population is initially fixed for the wild-type allele at all L condition loci and output

weights v0 at the ng network loci. In this study, we set v0 = 0 in all simulations to ensure that populations

were initially purely outcrossing (see main text). To assess the sensitivity of our results to the initial state

of the network, the input and regulatory weights, and the slope and bias of each trait locus were initialised

by sampling values in Gaussian distributions with mean zero and standard deviation of 2σg. This led to

initial networks with low sensitivity to condition and weak interactions among loci.

Detailed life-cycle. Each generation proceeds as follows. We first determine the condition φi of each

individual i ∈ {1, ... , N} using eq. (B1), and its selfing rate αi by iterating its gene regulatory network

as described above. If the network does not stabilise within T developmental time steps, the condition of

the individual is flagged with a selfing rate α• = −1, which serves to identify it as sterile. From these,

we calculate the female and male fecundities of individual i, f♀(φi, αi) and f♂(φi, αi), as

f♀(φi, αi) = f♂(φi, αi) =


φi if αi ⩾ 0,

0 otherwise.
(B6)

Fecundities through both sex functions are equal here, but we distinguish between the two functions now

in anticipation of extensions introduced in the next section.

To create the next generation, we generate N diploid offspring as follows. We first sample a maternal

parent with replacement from the current generation. Each individual i has a probability of being sampled

proportional to its female fecundity, f♀(φi, αi)/
∑

j f♀(φj , αj). This maternal parent then self-fertilises

with probability αi, in which case the paternal parent is taken to be the same individual. Otherwise, a

paternal parent k ̸= i is sampled from the current generation with a probability proportional to male
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fecundity, i.e., individual k ̸= i has a probability f♂(φk, αk)/
∑

j ̸=i f♂(φj , αj) to be sampled.

Each parents transmit one haplotype to the offspring. Recombination occurs freely between all loci,

meaning that alleles on the transmitted haplotype are equally likely to come from each of the two chromo-

somes of the parent, independently for each of the L condition loci and ng network loci. Mutation occurs

with probability µ for each allele at condition loci, in which case the allele switches state (i.e., mutating

wild-type alleles become deleterious, and mutating deleterious alleles revert to wild-type). Meanwhile,

mutation occurs with probability µg for each allele at regulatory loci, in which case a normally distributed

value with mean zero and standard deviation σg is added to each of its attributes, i.e., network loci evolve

under a continuum-of-alleles model [8].

Measurements and population back-up. We let simulations run for tmax generations. Every tmes

generations, we record the following information.

First of all, we save the condition φi, selfing rate αi and the number of generations of selfing since

the last outcrossing event along an individual’s genealogy of randomly sampled nmes individuals in the

population. If enabled, we also record the GRN attributes of those individuals (this generates large output

files and so should be used advisedly). In the extension that includes environmental fluctuations described

in section B.2.1, we also record the environment they find themselves in.

Second, we record mean φ and variance σ2
φ in condition in the population, the magnitude of inbreeding

depression δ, which we compute as

δ =
φout − φself

φout
, (B7)

where φself and φout are the mean condition of N selfed and N outcrossed individuals generated from

randomly chosen parents, respectively; the mean α and variance σ2
α in selfing rate in the population, the

number of deleterious alleles per haploid genome at the condition loci nmut, and the mean excess in

homozygote F at condition loci relative to the Hardy-Weinberg expectation.

Third, we record the distribution of selfing rates and condition in the population with bins of size 0.01

and 0.001, respectively. Finally, every tsave generations, we back-up the entire population into a single

file, which can then be used to relaunch simulations from the latest back-up (or indeed any back-up with

the same number of individuals and loci).
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B.2 Extensions

We extended our baseline simulation program to include two additional biological mechanisms, namely

environmental fluctuations and pollen discounting. We describe these extensions in turn below.

B.2.1 Environmental fluctuations

To include environmental fluctuations, we assume that each patch is characterised by an environmental

value, ε, which we take to be a normally distributed random variable

ε ∼ N (0, 1), (B8)

that changes every generation. This value could represent any environmental variable relevant to plant

development, such as exposure to sunlight or water availability. We assume that an environmental value

ε = 0 is optimal and so maximises condition, while values deviating from zero result in lower condition.

Specifically, the condition of an individual i heterozygous for n(i)
het deleterious alleles and homozygous

for n(i)
hom, developing in a patch with value εi, is given by

φi = exp

(
−∆E

ε2i
2

)(
1− s

)n
(i)
hom
(
1− sh

)n
(i)
het

(B9)

Eq. (B9) is composed of three terms. The first term describes the effect that the environment has on

individual condition. This environmental component is maximised for εi = 0, i.e., when the individual

develops in optimal environmental conditions, and decreases as εi moves away from zero. Parameter ∆E

controls how fast condition decreases as the environment deviates from the optimum. The next two terms

correspond to the effect of deleterious mutations in homozygous and heterozygous state on condition, as

before.
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B.2.2 Pollen discounting

To include pollen discounting in our model, that is, the reduction in pollen export that can accompany

increased selfing, we modify our male fecundity function f♂(φi, αi), such that it is now given by

f♂(φi, αi) =


φi (1− καi

γ) if αi ⩾ 0,

0 otherwise.
(B10)

where κ ∈ [0, 1] and γ > 0 respectively give the intensity and shape of the trade-off between selfing and

pollen export. This functional shape is inspired from [7], who showed that non-linear pollen discounting

effects can maintain mixed mating. A linear relationship is obtained with γ = 1, as commonly assumed

in the mating system literature (e.g., [1]); and becomes non-linear as soon as γ ̸= 1. The absence of

pollen discounting is obtained for κ = 0, in which case we recover the baseline model.

B.3 Supplementary figures for environmental fluctuations

This section shows figures for all the simulations we ran for our environmental fluctuations extension.
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No environmental fluctuations, ∆E = 0
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Figure S3: Simulation trajectories in the absence of environmental fluctuations (∆E = 0). As in the main text,
green tiles indicate the proportion of individuals with a selfing rate in the corresponding range, and white triangles
and black points respectively indicate mean and variance in the selfing rate. All simulations evolve condition-
dependent selfing. Parameters used: N = 5× 103, L = 103, µ = 5× 10−4, s = 0.05, h = 0.25, µg = 5× 10−3,
σg = 0.05.
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Weak environmental fluctuations, ∆E = 0.05
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Figure S4: Simulation trajectories with weak environmental fluctuations (∆E = 0.05). As in the main text, green
tiles indicate the proportion of individuals with a selfing rate in the corresponding range, and white triangles and
black points respectively indicate mean and variance in the selfing rate. All simulations evolve condition-dependent
selfing. Parameters used: N = 5× 103, L = 103, µ = 5× 10−4, s = 0.05, h = 0.25, µg = 5× 10−3, σg = 0.05.
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Moderate environmental fluctuations, ∆E = 0.25
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Figure S5: Simulation trajectories with moderate environmental fluctuations (∆E = 0.25). As in the main text,
green tiles indicate the proportion of individuals with a selfing rate in the corresponding range, and white triangles
and black points respectively indicate mean and variance in the selfing rate. All simulations evolve condition-
dependent selfing. Parameters used: N = 5× 103, L = 103, µ = 5× 10−4, s = 0.05, h = 0.25, µg = 5× 10−3,
σg = 0.05.
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Strong environmental fluctuations, ∆E = 0.5
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Figure S6: Simulation trajectories with strong environmental fluctuations (∆E = 0.5). As in the main text, green
tiles indicate the proportion of individuals with a selfing rate in the corresponding range, and white triangles and
black points respectively indicate mean and variance in the selfing rate. All simulations evolve condition-dependent
selfing. Parameters used: N = 5× 103, L = 103, µ = 5× 10−4, s = 0.05, h = 0.25, µg = 5× 10−3, σg = 0.05.
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Very strong environmental fluctuations, ∆E = 1
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Figure S7: Simulation trajectories with very strong environmental fluctuations (∆E = 1). As in the main text,
green tiles indicate the proportion of individuals with a selfing rate in the corresponding range, and white triangles
and black points respectively indicate mean and variance in the selfing rate. All simulations evolve condition-
dependent selfing. Parameters used: N = 5× 103, L = 103, µ = 5× 10−4, s = 0.05, h = 0.25, µg = 5× 10−3,
σg = 0.05.
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